
TUGboat, Volume 5 (1984). No. 2

A Chinese Meta-Font

John Hobby and Gu Guoan

Abstract
METAFONT is Donald E. Knuth's system for al-
phabet design. The system allows an entire family
of fonts or "meta-fonts" to be specified precisely
and mathematically so that it can be produced in
different sizes and styles for different raster devices.

We present a new technique for defining Chi-
nese characters hierarchically with METAFONT. We
define METAFONT subroutines for commonly used
portions of strokes and then combine some of these
into routines for drawing complete strokes. Param-
eters describe the skeletons of the strokes and the
stroke routines are carefully designed to transform
themselves appropriately. This allows us to han-
dle all of the basic strokes with only 14 different
routines.

The stroke routines in turn are used to build up
groups of strokes and radicals. Special routines for
positioning control points ensure that the strokes
will join properly in a variety of different styles. The
radical routines are parameterized to allow them to
be placed at different locations in the typeface and
to allow for adjusting their size and shape. Key
points are positioned relative to the bounding box
for the radical, and the special positioning routines
find other points that must be passed to the stroke
routines.

We use this method to design high quality
Song style characters. Global parameters control
the style, and we show how these can be used
to create Song and Long Song from the same
designs. Other settings can produce other familiar
styles or even new styles. We show how it is
possible to create completely different styles, such
as Bold style, merely by substituting different stroke
routines. The global parameters can be used to
augment simple scaling by altering stroke width and
other details to account for changes in size. We can
adjust stroke widths to help even out the overall

This research was supported in part by National Science
Foundation grant IST-8201926 and by the Systems Develop-
ment Foundation.

An abridged version of this report appeared on pages
62-67 of the Proceedings of ICTP'83, the 1983 International
Conference on Text Processing with a Large Character Set
(October 1983), published by the Chinese Language Com-
puter Society and the Information Processing Society of
Japan.

darkness of the characters. We also show how it
is possible to experiment with new ideas such as
adjusting character widths individually.

While many of our characters are based on
existing designs, the stroke routines facilitate the
design of new characters without the need to refer
to detailed drawings. The skeletal parameters
and special positioning routines make it easy to
position the strokes properly. In our previous
paper, in contrast to this, we parameterized the
strokes according to their boundaries and copied
an existing design. The previous approach made
it very difficult to create different styles with the
same METAFONT program.

0. Introduction

Chinese character generation is a very important
part of Chinese language computer systems, and
it is complicated by the number and complexity
of Chinese characters. Even simplified characters
contain an average of about twelve strokes each, and
a good printing system requires all four standard
styles in different sizes, with at least 8,000 characters
in each. The designs can be digitized using optical
scanning, but this is expensive and the resulting
characters must be edited individually.

METAFONT is a system for designing alphabets
for raster devices so that a single mathematical
description can be used for different sizes and styles
of fonts on different devices [I]. While not designed
explicitly for Chinese characters, METAFONT is
a general system with features useful for Chinese
character design.

Knuth's idea of a "meta-font" is to describe
alphabets parametrically so that one routine can
produce different styles of letters. In [2], Knuth
explains how this can be done for Roman alphabets.
We apply the same concept to Chinese characters,
except that we also describe the radicals and the
strokes parametrically. While there are really
only a few kinds of strokes that are fundamentally
different, similar strokes can vary significantly. We
can therefore produce better strokes with fewer
routines by parameterizing these differences. A
similar type of parameterization also applies to
radicals. We create a complete hierarchy starting
with eight routines for parts of strokes and thirteen
routines for complete strokes. This hierarchical
organization not only simplifies the design process,
it leads to more uniformity in the designs. The
more complicated strokes are formed in the radical
routines by combining the basic strokes, and more

TUGboat, Volume 5 (1984), No. 2

complicated radicals call routines that draw simple
combinations of strokes. The basic strokes have
special parameters that specify how they are being
joined together so that they can draw the special
features that appear near such joins. There are
also support routines for calculating points used
in the constructions and for positioning certain
combinations of strokes, taking into account style
parameters such as the stroke width.

Designing an entire set of 8,000 characters
would be a rather large project. Instead we
have designed a representative sample of about 140
radicals and 128 characters. Many of the radicals
appear in more than one character, and many more
characters could be formed from these radicals.
This work is an extension of the ideas presented in
[6], which showed how METAFONT could be used
to copy specific Song style designs. Here we also
make use of these designs as well as Bold style and
Long Song style from the same source [5], but we
only use them to get an idea of how the strokes
should be placed and to determine how to set the
parameters to the METAFONT programs so that
they can produce the various styles. The Song and
Bold style designs consist of a carefully chosen set of
about 125 large characters superimposed on graph
paper, and the Long Song designs were taken from
large scale photographs.

The global font parameters that affect size
and style are used mainly in the stroke routines
themselves. For Song style, there are 68 global
parameters that control the slant and aspect ratio,
the stroke widths and amount of taper, the size and
shape of the stroke end features, and various special
properties of certain strokes.

The stroke routines have to be designed care-
fully to work properly for all reasonable settings
of these parameters, and to join together properly
even when stroke widths and shapes change. To
achieve this, we use control points on the skeletons
of the strokes and join strokes by placing the ending
control point of one on the skeleton of the other.
This is simpler and more flexible than the technique
used in [6], where the parameters described the edge
of the stroke. The stroke routines also take fewer
parameters, so that all details except the placement
of the skeleton are controlled by the global font
parameters.

Completely different styles can be produced
from the same radical and character routines by
substituting different stroke routines. It is apparent
from [5] that the stroke skeletons are essentially the

same in Bold style as in Song style, and many of
the differences can be characterized in terms of a
few simple rules that are used by the Bold stroke
routines. The few differences that remain can be
achieved by adding METAFONT conditional state-
ments to key radical routines. There is more work
to be done on how to describe the skeletal differ-
ences between styles, so we only present preliminary
results here.

In section 1 we introduce METAFONT and
LCCD. In section 2 we examine some of the basic
stroke drawing routines to see how the style param-
eters are used. In section 3 we see how to combine
the basic strokes into radicals; and in section 4 we
discuss the choice of style parameters, adjustments
for changing point size, and experiments with new
styles. Appendix 1 presents examples of all the
basic strokes in the Song, Long Song, and Bold
styles. In appendix 2 we show all 128 characters
at 10 and 18 points and in an example of actual
Chinese text. Finally, in appendix 3 we give a
sample of actual METAFONT programs for Chinese
characters.

1. METAFONT and LCCD

METAFONT is an algebraic language with subrou-
tines, variables, equations, conditional statements,
and commands for describing letterforms. Equa-
tions are used in a declarative way to define the
numerical values of variables and the coordinates
of points. METAFONT will solve systems of linear
equations, keeping track of linear constraints be-
tween variables until enough equations are given to
determine their values.

Letterforms are actually created with "draw
commands" that refer to points whose coordinates
have been determined in the above manner. Draw
commands work by moving a discrete "pen" along
a path through the points and turning on all the
pixels covered by the pen. The actual curve used is
a piecewise cubic spline. The section of this spline
between any two points i and j is defined by

~ (t) = xi + (3t2 - -

+ r t (1 - t) 2 ~ i x - st2(1 - t)b jx

~ (t) = yi + (3t2 - 2t3)(y j - yi)
+ rt(1 - t)2Si, - st2(1 - t) S j Y

for 0 5 t 5 1 where (bi,,SiY) and (Sj , , 4,) are the
direction of the spline at points i and j respectively,
and r and s are additional parameters that META-
FONT calculates. METAFONT has a rule for
determining the directions (biz, Siy) at each point,

TUGboat, Volume 5 (1984), No. 2 121

but it is possible for the user to give them explicitly,
and this is the approach that works best for Chinese
characters.

All coordinates given in a METAFONT program
are in absolute raster units so that rounding to the
nearest integer corresponds to rounding to the
nearest pixel. This allows a METAFONT program
to make rounding adjustments to help fit the
characters to the raster. When a cubic spline is
rounded to the raster, the curves look much better
if the points where the spline is vertical occur at
integer x-coordinates.

Drawing with a circular pen or "cpen" produces
a constant width line with rounded ends. META-
FONT also has elliptical pens and special pens that
can be an almost arbitrary shape, but the most
general way to draw a shape is to use the "ddraw"
command to specify both sides independently and
have METAFONT fill in between them.

Complex mathematical constructions can be
performed in METAFONT by taking advantage of
subroutines and the ability to solve linear equations.
We use such constructions to define the points and
directions in various subroutines that draw strokes
and other parts of characters. In this way, the
subroutines can have a few parameters that control
what they draw, and there can also be various
global parameters that control overall properties of
the font and allow for differences in point size and
device resolution. A good illustration of this can
be found in [2], where Knuth describes in detail
the constructions and parameterizations used in his
Computer Modern family of typefaces. See also [7].

METAFONT subroutines have two types of pa-
rameters. Index parameters are point numbers from
the calling routine and may be used as point num-
bers in the routine that is being called. Ordinarily,
point numbers have purely local significance, but
in this way, it is possible to use points that are
defined in the calling routine or to define points
for use in the calling routines. It is even possible
to define a point partly in one routine and partly
in another, by giving additional constraints that
allow METAFONT to solve for the coordinates. The
second type of parameters are arbitrary numeric
expressions that should be "known" at the time
of the call. These may be used exactly as in any
programming language.

Tung Yun Mei's LCCD system for designing
Chinese characters [4] is based on METAFONT. It
has draw statements, variables, and pens as META-
FONT does, but it does not solve implicit equations,

and subroutine parameters have a different mean-
ing. LCCD has taken the ability of METAFONT
to do affine transforms and incorporated it into
subroutines. Each subroutine has transformation
parameters that apply to everything it draws, and
the transformations are composed when one sub-
routine calls another. METAFONT, on the other
hand, applies a global transformation matrix to
each point before actually plotting it.

LCCD makes it very convenient to apply affine
transformations to subroutines, but since subrou-
tines are limited to transformation parameters, it is
difficult to parameterize subroutine results in any
other way. Lack of conditional statements also
makes complex constructions very difficult.

Another feature of LCCD is that it has another
type of pens called "tear drops." which are intended
for drawing dot strokes. However. it is difficult
to draw high quality dot strokes of all styles with
these.

2. Stroke Drawing Routines

The routines we have constructed are carefully
parameterized with just enough information to
describe the skeletons of the strokes and how
they are joined to adjacent strokes. Mathematical
constructions are used to adapt the stroke to the
length, orientation, and shape determined by its
parameters and the global font parameters. These
constructions can get very complex, but since a
small number of routines suffice for an entire family
of fonts, the time spent writing and debugging them
is quite small in comparison to the whole project,
even when designing just 128 characters.

The approach suggested in [4] is quite different.
Tung suggests that the strokes should be drawn
as affine transforms of canonical strokes. Despite
its simplicity, this approach has a number of dis-
advantages. If the canonical stroke is rotated or
stretched more than a small amount it acquires
an undesirable shape. Examples in [3] show how
this problem is solved by having many different
versions of each stroke so that it is only necessary
to transform them by small amounts. In [3] there
are 108 different routines for drawing the strokes re-
ferred to here as horizontal strokes, vertical strokes,
pie strokes, dot strokes, triangle strokes, f-strokes,
and j-strokes. (See appendix 1.) In spite of this,
the results obtainable are not as good as with the
new method, where we have just a few routines that
transform themselves properly.

TUGboat, Volume 5 (1984), No. 2

Figure 1. The pie stroke construction in Song style and in Long Song.

2.1 The Pie Stroke

In Song style, the pie stroke is controlled by three
point parameters. These are points 10, 11, and
12 in figure 1. The stroke goes from point 10 to
point 12, and point 11 gives the initial and final
directions: from point 10 it heads toward point 11
and it approaches point 12 from the direction of
point 11. Notice that the stroke overlaps points
10 and 12 by an amount equal to half the stroke
width. This helps the design transform properly
when stroke width changes. The exact location of
the curve is determined by the sharpness parameter.
This is used to determine a point 7 on the skeleton
and another point 8 giving the tangent there. The
parameter gives the ratio between the distance from
point 11 to point 8 and the distance from point 11
to point 12. Similarly, it also determines point 0
where the tangent line crosses the line between
points 10 and 11. Point 7 is then located so that
the distance between points 7 and 8 divided by
the distance between points 0 and 7 is the same
as the ratio of the 11-12 distance to the 10-11
distance. The purpose of the sharpness parameter
is to control how close the stroke gets to point 11.
The construction for point 7 tends to place it near
point 11 except in extreme cases where this would
not yield a smooth curve.

Since there are other tapering curved strokes
in Song style, most of the pie stroke is drawn by a
separate subroutine. This takes as parameters the

three control points for the stroke, the width near
point 10, a special taper parameter that determines
how the width is changing, the slope of the line
between points 1 and 2, and the size of the flares on
each side of the top part of the stroke. The width
of the narrow portion near point 2 is a global style
parameter so it does not need to be passed as a
parameter. The routine fits a quadratic equation to
the width as a function of distance along the stroke
to the specified widths and taper. The function is
then used to find points on the edge of the stroke.
The equation gives the distance between the pairs
of points 1 and 2, 3 and 4, 5, and 6. The derivative
of the width function determines vanishing points
that give the spline directions at each pair of points.
The vanishing points are too far away to show in the
figure, but they are not hard to calculate. Suppose
point 7 is at distance x from point 10. Then the
distance between points 3 and 4 is w(x) and and
the distance to the vanishing point is -w(x)/w'(x).
The direction of the curve at both points 3 and 4
is toward this vanishing point. There are similar
vanishing points for points 1 and 2 and for points 5
and 6.

The maximum width of a pie stroke is a linear
function of its length, and the coefficients of this
function are style parameters. The taper that is
used for pie strokes is also a global style parameter.
It is chosen to be somewhat less than 1 so that the
rate of taper at the upper end of the stroke is less
than that at the lower end.

TUGboat, Volume 5 (1984), No. 2 123

The size of the flares at points 1 and fO are
also given by style parameters. These flares are also
drawn by a separate routine since similar flares also
appear in other strokes. To draw the right side flare
we pass points 1, 2, and 11 to the flare routine and
let it draw the flare and return the point 9 where
the flare stops.

2.2 The Dot Stroke

The dot stroke shown in figure 2 is halfway between
the Song style and the Long Song. This should help
to explain the effect of the dotrnd parameter that
is used to interpolate between the two styles. This
is a rather extreme example, because most style
parameters are not so drastic in their effect or so
complex in their implementation.

Figure 2. A dot stroke half way between the
Song and Long Song styles

The basic construction is very similar to that
used in [6], so we will not dwell on it here. Points
80 and 90 are parameters that control the position
of the stroke. In ordinary Song style, points 10,
12, and 6 define the lower end of the stroke. Their
placement relative to point 90 is fixed except for a
scale factor used to control the overall width of the
stroke. Lines 10-11-0 and 6-2-8 are tangent to the

stroke near the lower end; lines 3-8-7-5 and 4-3-9
are tangent to the stroke at the upper end. Point 8
is a fixed fraction of the way from point 7 to point 3
and point 0 is a fixed fraction of the way from
point 11 to point 4. The distance between points
5 and 6 determines the curvature of the stroke
and depends on the stroke length and the dotrnd
parameter. Finally, the distance between points 7
and 9 is fixed in terms of the scale factor that was
mentioned previously.

In Long Song style, the end of the stroke should
be more triangular than in Song style. Points 106
and 112 are versions of points 6 and 12 that would
be more appropriate for the Long Song. Point 112
is on the tangent from point 11 and point 106 is on
the tangent from point 2. These points are placed as
close to points 10 and 2 as possible without violating
a certain minimum separation defined by the style
parameter dotcrv. Furthermore, we constrain the
angle 11,112.106 to be 45'. The primary effect of
the dotrnd parameter is that we place point 212 this
fraction of the way from point 12 to point 112 and
similarly for point 206 between points 6 and 106
(not shown). The edge of the stroke is tangent
to the line between points 206 and 212 in two
places and to the line between points 10 and 212
in one place. In ordinary Song style, there would
be only one point of tangency between points 206
and 212, but we split it so that there can be a
large flat spot here in the Long Song style. The
dotrfid parameter interpolates between two sets of
placements for these points of tangency. Points
100, 101, and 121 are the placements for Long Song
where dotrnd = 1; the placements for dotrnd = 0
are not shown but points 200, 201 and 221 are
halfway between these and Long Song placements.

2.3 The Pie Stroke in Bold Style

In Bold style, the pie stroke is controlled by three
parameter points exactly as it is in Song style. In
figure 3, points 10, 11, and 12 have exactly the
same meaning as they do in figure 1, except that
the stroke must stop somewhat before point 12
in order to have the same apparent length. For
the main body of the stroke essentially the same
construction is used here as for the Song style except
that the width function is very different. The width
appears to be constant over the length of the stroke,
but actually, there is significant variation. This is
controlled by two style parameters that we shall
refer to as S and a. The widths relative to a
global stroke width parameter for curved strokes

124 TUGboat, Volume 5 (1984), No. 2

are 1 + (T + 612 near point 10, 1 + a - 612 near
point 12; halfway in between, the width is equal
to the parameter. As for the Song style, this
determines a parabolic function that gives all the
widths and locates the vanishing points.

Figure 3. The pie stroke in Bold style

The upper and lower ends of the stroke are
drawn by a separate subroutine that draws almost
all the stroke ends in Bold style. The routine
takes as parameters the stroke end parameter point,
the associated vanishing point, the maximum width
of the stroke, the widths of the flares on either
side, and two more parameters that determine the
concavity of the end of the stroke and the angle at
which it is cut off. The cutoff angle near point 10
is a linear function of the angle that the 10-11 line
forms with the x-axis and similarly the cutoff angle
near point 12 depends on the angle of the 11-12
line. The coefficients of these linear functions are
determined by style parameters.

3. Combining Strokes into Radicals

The stroke routines are designed to be as easy
to combine as possible. In general, we join two
strokes by placing their control points in some
simple geometric relationship with each other, and
by passing additional information to each of them
indicating how it must adapt itself. In both
Song style and Bold style, the routines have the
same names and parameters but their actions are
different. We will examine the problem of joining

basic strokes together in Song style, since this is the
more interesting of the two.

3.1 Positioning Strokes

Appendix 1 shows all the basic stroke routines along
with the parameter points that control the position
of each. With few exceptions each of the strokes has
only enough parameters to determine its overall size
and shape. This means that the radical routines
only have to determine the placement of the strokes
and the stroke routines handle all the other details
and produce uniformly good looking strokes.

Certain stroke routines do have extra param-
eters to allow more generality in special cases and
to simplify the process of joining basic strokes. In
figure 9, the size and shape of the hooks near points
20 and 26 at the ends of e-strokes and 1-strokes
are determined by font parameters, so these stroke
routines have no control points on the ends of
the hooks. For j-strokes, the situation is similar
except that the length of the hook often depends
on how much room for it there is in the radical.
We solve this problem by having point 29 partially
determined by the stroke routine and partially de-
termined by the radical. The radical routine sets
x26 - 529 to be a constant times a font parameter
or a linear function of the width of the radical.

The curved strokes all use a special guide point
parameter to give the initial and final directions of
the curve as explained in section 2.1. When the
curve is to be symmetrical it is more natural to
just give a single number specifying how much the
stroke curves, but sometimes a highly asymmetrical
curve is desired and this requires the extra degree
of freedom that is provided by the guide point. We
solve this problem by having a special subroutine
to calculate the guide point for symmetrical curved
strokes based on the endpoints of the curve and the
amount of curvature desired.

The guide point for curved strokes is also used
by routines that help join strokes together. Fig-
ure 4a shows how a vertical stroke might be joined
to a pie stroke. The joining routine takes points 1,
2, and 3 defining the pie stroke and points 4 and 5
defining the vertical stroke, and finds a new point 6
where the line defined by points 4 and 5 crosses
the skeleton of the pie stroke. This computation is
necessary to insure that the vertical stroke will al-
ways touch the pie stroke without crossing through
it completely.

TUGboat, Volume 5 (1984), No. 2

(a) (b) (c)
Figure 4 . Special subroutines insure proper positioning when basic strokes are joined.

Figure 4b shows how a special routine is used
to join pie strokes to triangle strokes. Here again,
exact positioning is required to insure that the
strokes meet without crossing through each other.
The position of the join between strokes is controlled
by point 1 where the extensions of their skeletons
cross. The positioning routine takes points 1, 2,
and 3 as arguments and sets points 4 and 5 so that
they can be used as control points to the stroke
routines. The routine also fills in a small area above
point 1 in order to smooth out the corner where
the strokes join and to provide an optical correction
by thickening the end of the triangle stroke. The
amount of this thickening depends on the width of
the end of the pie stroke and this in turn is a font
parameter that also controls the width of the thin
portions of other strokes.

Figure 4c shows another stroke combination
where positioning is critical. The lower left corner
of the pie stroke must exactly match the upper left
corner of the dot stroke. A special routine takes
points 1, 2, and 3 and finds point 4 on the line
between points 1 and 3, and point 5 on the line
between points 1 and 2, so that the strokes will join
properly if point 4 is used as the control point for
the pie stroke and point 5 is used as the control
point for the dot stroke. In ordinary Song style, it
turns out that points 4 and 5 are almost on top of
point 1 so that there is no room to show point 4 in
the figure. In other styles this is not the case, but

the special routine guarantees that the strokes will
always join properly.

3.2 Endpoint Parameters

When strokes are joined together, the ends near the
join have to change shape to adapt to the different
possibilities. Fortunately, most of the basic strokes
can be joined to other strokes only in a very limited
number of ways. Most of them have two special
parameters that determine how each end is to be
joined with surrounding strokes and thus what form
it should take. These parameters range over a small
set of integral values that we refer to symbolica~ly
as norm, join, corner, etc. For most strokes. not
all of these values are used and some of those that
are used in Song style become synonymous in Bold
style and vice versa. In general, the parameters are
norm for isolated strokes as shown in appendix 1.

The radical in figure 5a is constructed from
three basic strokes and it illustrates two of the
most common types of joins between strokes. The
relative positioning of the strokes is very simple:
point 0 is passed to the f-stroke routine as well as
the horizontal stroke routine, and similarly, point 3
is also used by the 1-stroke routine. The turning
feature near point 3 where the horizontal stroke
joins the I-stroke is handled exactly the same way
as similar features where horizontal strokes join
vertical strokes, e-strokes, and j-strokes.

TUGboat, Volume 5 (1984), No. 2

(a) (b)
Figure 5. Two simple radicals that illustrate the basic ways of joining horizontal and vertical strokes.

It is most convenient to draw the turning
feature with a separate routine since it depends
on the control points for both the horizontal stroke
and the I-stroke. An added benefit is that this same
routine can be used to draw the similar but slightly
smaller feature found near point 1 in figure 5b. End
point parameters tell the strokes not to draw their
usual ending features and cause the 1-stroke to stop
short of point 3 so that it cannot cross outside of
the turning feature.

The join between the f-stroke and the hori-
zontal stroke is somewhat simpler, since the feature
near point 0 in figure 5a is part of the f-stroke.
In fact, this f-stroke is almost identical to iso-
lated f-strokes. As before, the situation would
be equivalent if the f-stroke were replaced by any
other basic stroke having similar structure on top.
The complicating factor is that there is an optical
correction to help balance the height of the feature
near point 0 with that of the feature near point 3,
and this requires the f-stroke routine to know the
size of the feature. This size depends on the length
of the horizontal stroke and whether or not it is
joined to another stroke as in the figure, so it would
be awkward to provide enough information to the
f-stroke to enable it to calculate such a quantity.
We solve this problem by always drawing the hori-
zontal stroke first and saving the information in a
global variable. This is the only place where it is
necessary to violate the usual stroke order, and in
fact, it is the only place where stroke order matters
at all.

Figure 5b illustrates the other main ways in
which basic strokes are joined. The feature near
point 1 is handled exactly the same way as the
similar feature in figure 5a, except that the lower
end of the vertical stroke must be shortened and
the feature is somewhat smaller.

When a vertical stroke is joined to the middle
of a horizontal stroke or vice versa, the control
point for the abutting stroke should lie on the
skeleton line of the stroke being joined. This means
that point 5 should lie on the line between points
1 and 3 and that point 3 should lie on the line
between points 2 and 6. The special end point
parameters are used to tell the routine for the
joining stroke not to draw its usual ending feature.
In the case of a vertical stroke joining a horizontal
stroke as at point 5, the vertical stroke must have
a squared off end flush with its control point. This
is required because the vertical stroke can be much
wider than the horizontal stroke that it joins and
we have to guarantee that it will abut properly
without crossing the horizontal stroke. The situa-
tion would be similar if the vertical stroke were to
join the horizontal stroke from below, or even if the
vertical stroke were replaced by a pie stroke.

It is also convenient to use end point parameters
for variations not related to joining strokes together.
For instance, the lower end of the I-stroke near
point 5 in figure 5a is different from the more
common version shown in appendix 1. The 1-stroke
routine has a parameter that tells it which form of
lower end to draw.

3.3 Radical Routines

Since radicals can change size and shape when
they are combined in different ways in different
characters, it is necessary to design radical routines
that are parameterized to allow this. The basic
technique for doing this is to apply a simple
geometric transformation to the control points of
all the strokes. The size and shape of a radical
is controlled by two points that are passed to the
radical routine. Typically, these points will be two
opposite corners of an imaginary box in which the

TUGboat, Volume 5 (1984)) No. 2 127

(a) (b) (c)
Figure 6. Examples of how radicals change their shape when they are used in different characters.

radical lies. In figure 6a, for instance, the left
radical is controlled by points 0 and 1 and the
right radical is controlled by points 2 and 3. In
the radical routines, all coordinates are relative to
the box defined by the control points. METAFONT
has a convenient syntax for this: for instance,
the x-coordinate of the vertical stroke in the left
radical is referred to as .42[xo, xl] which means
(1 - .42)xo + .42x1. (Actually, the specification is
slightly more complicated than this because of the
need for rounding instructions.)

The right radical in figures 6a and 6b appears to
be the same size and shape in both characters, but
it is actually 10% narrower in figure 6b. Differences
of this magnitude are very common in Chinese
characters and they can easily by handled by simple
geometric transformations as described above.

Sometimes additional corrections are required
when the amount of stretching or shrinking in each
coordinate is very large. Figures 6b and 6c show
how a radical undergoes such a change. The main
radical routine is controlled by points 0 and 1
and it in turn calls a simpler radical that is
controlled by points b4 and b5. Note that the
control points are key points on the strokes in
the radicals rather than the corners of surrounding
boxes. This is basically an arbitrary choice, but
it tends to facilitate joining additional strokes onto
simple radicals to form more complicated ones. The
choice of points 0 and 1 is convenient because it
allows all the coordinates except Yb4 to be specified
by METAFONT expressions of the form cr[xo. X I] or
of the form /?[yo, y l] .

The y-coordinate of point b4 depends on more
than just yo and yl. If we write 964 as a META-
FONT expression of the form y[yo, yl], we find that
y z -.29 in figure 6b and y z --.I3 in figure 6c.
Another way to look at the problem is that if we
use 964 and yl for the control box, then points 0
and b5 will be too high when a radical designed for
figure 6b is used in figure 6c. The solution we adopt
is to make y a linear function of (yl - yo)/(xl -xo).
This is easy to do because of METAFONT's ability
to solve implicit linear equations, and the result is
a much more flexible radical routine.

4. Font Parameters and Different Styles

Our goal is to have one program that can create a
whole family of Chinese fonts by just changing a few
parameters. It is desirable to have these parameters
relatively free in the sense that, within limits, the
parameters can be set arbitrarily and still produce
a reasonable font. This is especially difficult for
Chinese because it takes several parameters to
describe each basic stroke and it is not obvious
what relationships have to hold in order for all
the strokes to look reasonable and appear as if
they belong to the same font. Here, we emphasize
the need for sufficient variability while still trying
to keep the number of parameters required to a
minimum. We have enough parameters to allow us
to obtain all three styles from [5], but further study
is still necessary to determine exactly what degrees
of freedom a Chinese "meta-font" should have.

TUGboat, Volume 5 (1984), No. 2

Figure 7. Five characters in Song style, Long Song style, and Bold style.

4.1 Parameterization of the Font

Figure 7 shows how five different characters appear
in ordinary Song style, Long Song, and Bold style.
The basic positioning of the strokes is almost the
same in all three styles, but the strokes themselves
are very different. The Song and Long Song
style characters in the first two lines all use the
same stroke routines, but a completely different
set of stroke routines was used for the Bold style
characters in the last line. The variation between
the ordinary Song style in the first line and the
Long Song in the second line is entirely due to
changes in the font parameters.

The character shapes are smooth functions of
most of the font parameters, although there are two
cases where conditional tests are used to produce
changes in structure. Notice that the character in
the second column of the figure has a horizontal
stroke that joins a vertical stroke in the ordinary
Song style but not in the Long Song. There is a

special gap parameter that controls the degree of
shortfall in such cases. For the ordinary Song style,
this parameter is zero and horizontal strokes join
in the usual way. When the end point parameter
is set appropriately, the horizontal stroke routine
tests this parameter and shortens the stroke by the
distance gap and draws the usual ending feature.

The characters in the first three columns show
the effects of another font parameter that must be
treated specially. All three characters have four
basic strokes that form a rectangle. We will refer
to this combination of strokes as the square radi-
cal. In the Long Song style, the horizontal stroke
extends beyond the vertical stroke in the lower
right corner of this radical, but in the ordinary
Song style, the vertical stroke extends beyond the
horizontal stroke. This is handled partly by the
stroke routines and partly by the radical routines
and this is controlled by the font parameter over-
shoot. End point parameters are used to tell the

TUGboat, Volume 5 (1984), No. 2 129

Figure 8. One possible way to experiment with a "meta-font." With each step the first character is
compressed 18% and the second one is expanded by 22%.

vertical stroke and horizontal stroke routines that
they are joining in this way. In this case, if the over-
shoot parameter is non-zero, the horizontal stroke
is lengthened by a distance of overshoot and the
vertical stroke is cut off at the bottom like the
center one in figure 5b. If the overshoot parameter
is zero, then the horizontal stroke is cut off instead.
Unfortunately, the radical routine also has to test
the overshoot parameter because the lower con-
trol point for the vertical stroke should be on the
horizontal stroke in order for them to join properly
in the Long Song style. Very few different radical
routines have to make this test, however, because
most of them just call the square radical.

Other font parameters effect stroke widths, the
sizes of various features and certain critical an-
gles such as those that control the slopes of the
ends of the strokes. Other prominent parame-
ters are the overall height to width ratio of the
characters and the slant parameter that makes the
horizontal strokes slightly sloped in the Long Song
style.

The Bold style stroke routines use a different,
smaller set of font parameters. There are fewer
special features to control, but stroke widths un-
dergo subtle variations and there are other features
such as the concavity of the ends of the strokes and
the curvature of the dot strokes. Since we design
the radical routines based on the Song style, stroke
lengths have to be corrected slightly so that the
strokes that are much thinner in the Song style will
not appear too long in the Bold style. Figure 9
in appendix 1 shows how many of the Bold style
stroke routines do not draw all the way to their

ending control points. The magnitudes of these
corrections are not true font parameters because
they are calculated by the Bold style stroke routines
based on the stroke width.

4.2 Adjusting Font Parameters

We have already seen how font parameters can
be used to create different styles of characters
approximating existing designs. Minor adjustments
can made to change qualities like slant and boldness
and to augment simple scaling to improve the
appearance in small point sizes. It is also possible
to experiment with new ideas and even go to
ridiculous extremes.

In small point sizes it is desirable to keep
stroke widths more uniform so that the thin strokes
will not be too hard to see and the thick strokes
will not encroach upon the white space too much.
In Song style, there are three main parameters
that control stroke width and a few more for the
thick portions of strokes that vary in width. For
the 18 point characters shown in appendix 2 and
the large diagrams shown in the other figures,
the basic widths of the vertical strokes, horizontal
strokes, and the thin parts of tapered strokes are
respectively 6%, 2.2%, and 1.8% of the type size.
For the 10 point characters, however, we use 6%,
3.3%, and 2.7%. This has the virtue that it tends
to correct for the limitations of the printing device.
The characters in the appendix were printed on a
DOVER printer with a resolution of 384 dots to
the inch. This means that for a 10 point font, all
the characters are at most 53 pixels high. With the
correction the horizontal strokes come out to be two

TUGboat, Volume 5 (1984), No. 2 131

pixels wide and the vertical strokes are three pixels
wide. Without the correction the horizontal strokes
would be only one pixel wide and they would hardly
show up at all.

Figure 8 shows one possible way to experiment
with a "meta-font." We start with the characters
the same width and progressively compress the
simpler character while expanding the more compli-
cated one. Note that this is not a simple geometric
transformation, but a more complicated one as de-
scribed in section 3.3 where the stroke widths are
preserved and certain adjustments can take place.
The stroke routines that cause the ending features
on the horizontal strokes to become slightly larger
as the character is expanded. It is possible to carry
such experiments to great extremes, but milder ver-
sions may be desirable in some applications. There
are innumerable possible variations to be explored.

5. Conclusion

We have shown how it is possible to use META-
FONT to design Chinese characters, and to obtain
many different styles from the same program just
by changing a few parameters. It is possible to
build up a hierarchical structure so that most of the
work is not too difficult and the resulting quality
can be very high.

The authors are not expert font designers.
Although we had access to high quality profes-
sional designs, they did not encompass the full
range of characters discussed in this work and
some judgment is required in order to best adapt
them to the new medium. Details such as the exact

relative positioning of the radicals could probably
be improved. Our goal is to provide the groundwork
for further research.

Appendix 1

For convenience, the basic strokes have been given
somewhat arbitrary names with unique first letters.
Figure 9 shows all the basic strokes and their control
points for the ordinary Song, Long Song, and Bold
styles.

The strokes on the left in the figure are in
ordinary Song style and the Long Song and Bold
style versions are shown in the middle and on the
right. The correspondence between strokes and
control points is as follows: horizontal stroke (0, I) ,
vertical stroke (2,3), a-stroke (4,5,6,7), pie stroke
(8,9, lo), dot stroke (11,12), k-stroke (13,14),
na stroke (15,16,17), e-stroke (18,19,20), f-stroke
(21,22,23), 1-stroke (24,25,26), j-stroke (27,28,29),
bar stroke (30,31), triangle stroke (32,33).

Appendix 2

Figure 10 shows how our fonts might be used in
actual Chinese text.

Figure 11 lists all 128 characters in Song style
at 10 and 18 points and in Bold style at 18 points.
Notice that many radicals appear in several different
characters. Each radical is produced by one META-
FONT subroutine, and all of the characters using
a radical need only call the subroutine. This
provides a substantial saving in labor and helps
build uniformity into the font.

Figure 10. An example of actual Chinese text. (B % i q - B B ~ % & $ W K &)

132 TUGboat, Volume 5 (1984), No. 2

Figure 11. Three fonts that were created from the same METAFONT program.

TUGboat, Volume 5 (1984), No. 2

Append i x 3

Here, we show some of the actual METAFONT code. The dot stroke routine for
Song style is an example of one of the most complex stroke routines. Once working,
however, it is very easy to use and it provides an enormous degree of flexibility.

First we have some of the support routines from which the elaborate
constructions in the stroke routines are built, then we have the stroke routine
itself, and finally one of the radical routines that were used to create the last
column of figure 7.

% Set slope = (y; - y j) / (x i - x j)
% and also find derivatives of arc length with respect to x and y
subrout ine fslope (index i , i ndex j) :
n e w slope; n e w dsdy; n e w dsdx;
i f x, = x,: slope = 7423.16;

else: i f y, = y,: slope = 117423.17;
else: slope = (y, - y,) / (x , - x,);

f i ;
f i :

dsdx = sqr t (1 + slope . slope);
dsdy = sqrt (1 + l/(slope . slope)).

% a large random number

% Set dist to the distance between points i and j , sqrdist to the square
% of the distance, and also set dx and dy to the x and y components.
subrout ine fdist (i ndex i , i ndex j) :
n e w dx, dy , dist, sqrdist;

dx = x, - 5%;

dy = Y j - Y z ;
sqrdist = dx . dx + dy . dy;
dist = sqrt sqrdist .

% Specify that point k is distance d to the right of the line from i to j .
% Points i and j should be known.

subrout ine dtoright(var dl i ndex i , i ndex j)(index k):
call fdist (i , j) ;

xk . (y j - y;) + yk . (x i - x j) = dist . d + xi . (y j - y;) + y; . (x i - x j) .

% Make a square end of width d near i for a stroke heading toward j . Facing from
% i to j , 1 is in the left and r is on the right.
subrout ine sqend (var d, i ndex i , i ndex j) (i ndex 1 , i ndex r) :
no proo fmode;
call toward(-(d - 1) /2 , i , j, 0) ;
call right (j , 0 , l) ;
call right (j , 0, r) ;
call dtoright ((d - 1) /2 , j, i, 1) ;
call dtoright((d - 1) /2 , i , j, r) .

% Find point k, distance d of the way from i to j
subrout ine toward(var d, i ndex i, i ndex j) (i ndex k) :
call fdist (i, j) ;

xk = xi + (dldist) . dx;
yk = yi + (d ld ist) . dy.

134 TUGboat, Volume 5 (1984), No. 2

% Specify that point k is on the line between points i and j , which should be known.
subrout ine online (index i , i ndex j) (i ndex k) :

X k ' (y j - ~ i) + Y k ' (x i - x j) = Xi' (y j - y i) f Y i ' (x i - x j) -

% Find point r at distance "dist" from k so that the following lines from points
% i and r will have length ratio "rat ." The lines will be tangents of a curve at
% i and r . The tangent from i passes through j and that from r passes through k.
subrout ine fspoint(index i , i ndex j , i ndex k , i ndex r , var dist, var rat):
no proofmode;
call intersect (k , i , j, 1) ;
n e w b w ; bsqr = (x , - ~ l) . (x , - x1) + (y , - y1) . (y, - y1);
n e w csqr; CSqr = (xk - X I) ' (xk - 2 1) + (yk - ~ 1) ' (yk - ~ 1) ;
call fslope (i , j) ;
n e w tmpa; tmpa = dist . rat + sqrt bsqr;
n e w tmpb;

tmpb = (sqrt(tmpa tmpa + (rat . rat - 1) . (bsqr + csqr - dist . dist)) - tmpa)/(rat . rat - 1)ldsdy;
yo - y, = (xo - x,) . slope;

i f y, > y,: yo - y, = tmpb;
else: y, - yo = tmpb;

f i ;
call fslope (0 , k) ;

y, - yk = (x , - x k) . slope;
i f yo > yk: y, - yk = distldsdy;

else: yk - y, = distldsdy;
f i .

% This draws a dot stroke compromising between two styles and changes point n
% by rounding its x-coordinate.
subrout ine dotstroke (i ndex n, i ndex t) :
n e w tmpf ;
i f x, < xt:

call fdist (t , n);
y5 - ye = dotrnd .0.13. dist;
910 = 312 = round(y t - (.4 . cf . dotw - 112));
2 5 = 2 6 = 2 1 2 = round(x t + (.4. ~f . dotw - 112));
96 -- Y12 = ~f ' dotw - .5;
2 1 2 - 510 = 0.56. cf . dotw - .5;
2 2 = 5 7 = xt;
tmpf = .4;

else:
call roundx (n , 1) ;
x5 - 566 = 0.13 ' (3, - yt);
xlo = x12 = round(x t - (0.4. cf . dotw - 112));
35 = Y6 = Y12 = round(yt - (0.4. cf . dotw - 112));
~ 6 6 - 2 1 2 = cf . dotw - .5;
call fslope (t , n);
26 = ((.6slope + 2)/(slope + 2)) [x lz , X M] ;

ylo - ~ 1 2 = 0.56. cf . dotw - .5;
Y2 = Y7 = yt;
tmpf = .54;

fi;

% at slope > 2, 6 moves 0.4 of the way to 12

TUGboat, Volume 5 (1984), No. 2

call sqend (w l , n, 6 ,3 ,4) ;
call online (3 ,5 ,7) ;

x* = .37[x7, x3] ;
Y8 = . 37 [~7 , ~ 3 1 ;

call online (6 ,8 ,2) ;
call toward((dotmd [1, .57])(y2 - yl2) - 1'7, t , 9) ;
call fspoint (4,9,10,11, .48 . cf . dotw - .5, .64);
if x , < x t :

X l l l = x l l ; Y l l l = y11;
call toward (cf . dotcrv, 2,6,106);
call toward(-cf (dotcrv + .19dotw), 10,11,112);
call sin(l06,112,111);
if acc > (sqrt .5): new 2 1 1 2 , ~ 1 1 2 ;

call online (10,11,112);
else: new ~ 1 0 6 , Y106;

call online (2,6,106);
f i ;
(~ 1 0 - 2 1 1 + Yl l - ylo)(xl06 - ~ 1 1 2)

+ (~ 1 0 - x l l + YlO - ~ l l) (~ 1 0 6 - ~ 1 1 2) = 0 ;
2206 = dotrnd [xl06, ~ 6 1 ; Y206 = dotrnd[y 106, ~ 6 1 ;

2 2 1 2 = d o t r n d [~ i i z ~ ~ i ~] : ~ 2 1 2 = dotrnd[y112, Y I Z] ;
call toward (cf . dotcrv, 212,10. 100);
5120 = 2100; 9120 = y100;
call toward(cf . dotcrv, 212,206,121);
call toward(cf . dotcrv, 206,212,101);

else:
call toward(cf . dotcrv, 10,11,111);
call intersect (10,6,8,50) ;
call fdist (l 0 , 5 0) ;
call toward (- d i d , 50,8,112);
x206 = x6; y206 = Y6;
2212 = d0trnd[a:l lz1x12]; ~ 2 1 2 = dotrnd[y l l2 ,y lz] ;
call toward (cf . dotcrv , lo , 212,100);
call toward (cf . dotcrv, 212,10,120);
call toward (cf . dotcrv, 212,206,101);
2 1 2 1 = x101; Yl2l = y101;

f i ;

% 6 is almost the right direction

% 6 to 8 is tangent on top curve
% 2 is the tangent point

% 9 is 4 tangent (divergence near n)
% 11 is point of inflection

% we are not going to move point 11
% 106 is new version of 6

% 112 is new version of 12

% free either 106 or 112 to move out

% make 106 112 10 a 45 degree angle
% 206 is compromise version of 6

% 212 is compromise version of 12
% 100 is new version of 0

% 120=100 since point 0 doesn't split

% 101 and 121 are new versions of 1

% 111 is new version of 11;

% 112 is new version of 12
% make 206 same as the original 6
% 212 is compromise version of 12

% 100 and 120 are new versions of 0
% 101 is new version of 1

% 121=101 since point 1 doesn't split

subrout ine rzhe (index 11 , index ur):
s o = (19/70)[~11, xwl;
"1 = (62/70) [xn, xu,];
x2 = (16/70) [xu, G I ;
23 = (64/72) [xu, xu,];
2 4 = g00d3(32/70)[x11, xu,];
5 5 = goodg(33/70) [m, xu,];
xs = (60/70) [XU, xu,];
x7 = (54/70)[~11, xu,];
xs = (5170) [XU, XU,];
~9 = (4 1 / 7 0) [~ ~ , ~ r] ;
210 = (52170) [xu, xur];
call roundy (0,2);
call roundy(l,2);
call roundy (2,2);
call roundy (3,2);
call 'h hstroke (0,1, norm, norm);
call 'h hstroke(2,3;norm, norm);
call 'e estroke (4,5,6, norm);
2all bendpie(7,11,8,0.15);
call 'p piestroke (7,11,8,7, norm, norm);
call 'd dotstroke (9,lO).

TUGboat, Volume 5 (1984), No. 2

% 70% of x-side

References

1. Knuth, Donald E., and METAFONT, New directions in typesetting,
Digital Press and the American Mathematical Society, 1979.

2. Knuth, Donald E., The Computer Modern Family of Typefaces, Stanford
Computer Science Report STAN-CS-80-780 (January 1980).

3. Tung Yun Mei, LCCD, A Language for Chinese Character Design, Stanford
Computer Science Report STAN-CS-80-824 (October 1980).

4. Tung Yun Mei, LCCD, A Language for Chinese Character Design, Software
Practice and Experience 11 (December 1981), 1273-1292.

5. Unpublished Chinese character designs, Shanghai Printing Technology Insti-
tute.

6. Gu Guoan and Hobby, John D., Using METAFONT to Design Chinese
Characters, Computer Processing of Chinese and Oriental Languages 1 (July
1983), 4-23.

7. Knuth, Donald E., The Letter S, The Mathematical Intelligencer 2 (1980).

