
TUGboat, Volume 2, No. 2

A MACRO MENAGERIE

Brendan D. McKay

1. Math-rfyle tasting
One of the things which one should be able to

do in w, but which apparently is impossible, is to
teet for the current math-style (display, text, script
or scriptscript). For example, how does one write a
macro which produces a bold-face "gn of the right
sise? (\def \gf\hboxi\bf g33 obviously doesn't.)
Here's a trick which doesn't completely solve the
problem, but which goes a long way towards that

goal.

The idea is to maintain a macro \W which has
the value "Sn for scriptstyle; "X'' for scriptscript-
style, and "T* for all other styles, including non-
math mode. This can then be tested using the
\if macro. The definitions above will maintain \US
correctly if the style changes by use of the sub-
script or superscript characters, but not otherwise.
Style change macros like \scriptstyle can also be
redefined to maintain \US, but automatic changes
caused by things like \over will go undetected. In
such cases the user must define \MS himself, if it is
going to be tested.

As a aample application, here is a definition of
\bf ("select bold-facen) which behaves the same as
normal in non-math mode and selects a font of the
right she in math-mode. In the latter case it acb
only on the following character, control sequence or
group. Let's suppose that A, B and C are bold-face
fonts of the required sizes.

In our second application we'll define a macro
for raising a portion of text. If you type
'Vift(tert)\by(dimen)\\", then (text) ie put in
a \hbox and raised by an amount (diaen). (text)
will appear in the current etyle, except that display
style and text style are not distinguished.

2. Glouplem \if r
A good source of inscrutable bugs involves the

way that handles conditionals like \ i f , \ i f pos,
\ i f mode etc.. Let's suppose that we want to select
font A if the macro \format has the value "1" and
font B otherwise. The obvious method is

\if\fonetli\:A)\eleei\: B)

but this doesn't work. The reason is that the text
produced is not "\ :A" or "\ :B", but "(\:A)" or
"<\ : B)" . Since font definitions are revoked at the
end of group8 the total effect is (nothing useful).
It is sometimes handy to have another version of
\ i f which avoids this rather unsatisfactory state of
affairs. While we're at it, we'll change the format to

\If(char~)(charz)(true text)\elee
(f alee telt)\endi f

- a few fewer braces never hurt anybody. Three
possible definitions for \ I f are as foH1ows.

(1) \def \If#iW2#3\else#4\endif
<\if#l#2(\gdef \1ftenpC#3n\else
i\gdef \If temp<#4>)\Iftemp>

(2) \def \else#l\endif<) \def \endif (3
\def \1f#l#2(\if#l#2<\ def \Ifte <))\else
<\gdei\Iiterpul\elseB~\Itte$

(3) \def\1f#l#2~\if#1#2i\gdef \Iftenp##l\else
##2\endif <##I))\else<\gdef\If temp##l\else
#2\endif <##2))\1ftes)

All three definitions work in most ordinary cir-
cumstances. The first definition has the unpleasant
peculiarity that any t s which occur in (true text)
or (false text) must be typed as ##, a prob
lem which grows exponentially if \ I fs are nested.
The second definition avoids this problem but has
another deficiency: it won't nest properly (why?).
The third definition avoids both problems. IT (true
text) or (false text) contains another \ I f , simply
enclose it in 0 s . This doesn't cause grouping, of
course, but it will ensure that each \else or \endif
gets paired with the right \If .

3. Recureion
Although the manual apparently never says

so, the macro facility in '&X is completely recursive.
In other words, macros can directly or indirectly call
themselves. Of course, we are not,given this little
gem of information because the knowledge would be
almost useless. Nevertheless. there is a little gap
between "almost uselessn and "completely useless",
and this section is devoted to exploring it. Three
applications of recursion we will consider are (i) loop
structures, (ii) counter arithmetic and (iii) macros
accepting variable numbers of arguments.

(i) Loops are quite easy to create in 'I@C as long
ae one respecfs 'l)#?s finite capacity. In order to

make imps which can be repeated a large number

TUGboat, Volume 2, No. 2

of times, the recursive call must be the very last
thing in the expansion, and in particular it must
not be in a group (m won't nest groups to an
indefinite depth). The last requirement means that
the recursive call can't be part of the result text of
a conditional (see Section 2). Here's some examples:

\dei\savecountwl#2<\ifpos#l<\xdef
#2i\count#l))\else
<\eetcount#l-\count#l\xdef #a<-\countll)
\setcount#l-\count#i))

\gdef \~temp#l#2{#2\~loop#l<#2))
\def \~loop#l#2~\ifpostiC)\else

i\gdef \~temp##l##2{>)\~teap#l<#2))
\def\while#1#2\endwhileC\Yloop#l{#2~\gdef

\Wtemp##l##2(##2\~loop##1(##2)))
\def \repeat#l\times#2\endrepeat

<\savecount9\~tem~\.setcount9#1

\while9{#2\advcount9by-l)\endwhile
<\setcount9\~temp))

\savecount(digit)(control sequence) saves
the value of a counter in a control sequence.
\while(digit)(text)\endwhile will produce (text)
repeatedly until \count(digit) becomes non-
positive. (Presumably (text) will set the counter
non-posi tive eventually.) \whiles can be nested if
tl.ey use different counters.

\repeat(value)\times(text)\endrepeat will
produce (text) precisely (value) times, where
(value) can be either a number or a counter.
The use of \Rtemp in \repeat enables \repeats
lo be nested to one level, but no further.
For example, \repeat5\times(x-\repeat3\times
aA\endrepeat)\endrepeat produces

(ii) The fact that counter operations like multi-
pli..ation and division are not provided by '&X is one
indication of their likely usefulness. Of course, that
won't stop us from doing these operations anyhow.

\def \neg#l{\setcount#l-\count#l)
\def \ H l f # l#2 (\advcount9by-#2\advcount9by-#2

\ifpos9~\advcount#l by#2)\else
<\advcount9by#2\advcount9by#2))

\def\balve#l(\savecount9\~tem~
\setcount9\count#l\advcount9\setcount#l 0
\H l f #11073741824 \~1f#1536870912
\ H l f #l268435456 \Hlf#1134217728
\Hlf#167108864 \Hlf#133554432 \Hlf#116777216
\ H I 1 #l8388608 \ H l f ti4194304 \ ~ 1 f #l2097152
\ H l f ~11048576 \ H l f Xi524288 \ H l f ti262144
\Hlf#1131072 \ H l f #I65536 \ H l f #I32768
\H l f #I 16384 \ ~ l f #I8192 \Hlf#14096
\Hlft12048 \Hlf#ll024 \Hlf#1512 \Hlf#1256
\Hlf# l l28 \Hlf#164 \ H l f t i 3 2 \Hlf#116 \Hlf#l8
\Ill1114 \ ~ l f # l 2 \ H l f # l l <\setcountQ\Htemp)>

\def \multiply#l\into#2~\setcount8#l\setcount9
\count#2\setcouat#2 0
\while8\if even8{)\else
(\advcount#2by\couatS)
\advcount9by\count9\halve8\endrhile)

\halve(digit) will divide any counter other
than counter 9 by two, provided its origid value is
in the range 0 to 4294967294. Some of the earliest
calls to \Hlf will need to be removed for machines
with small word-sizes. \sqroot(digit) will take the
square root of any non-negative counter other than
counter 8 or 9. In the other cases, the format is
\operation(value)\into(digit), where (value) is
a number or a counter and (digit) is a counter num-
ber for the other argument and the answer. (value)
must be non-negative in each case. \count(digit)
may be negative for \Divide or \multiply but not
for \divide. The restrictions on which wunters
can't be used and which counters are destroyed are
most easily seen by examining the definitions. Both
\halve and \multiply are quite fast, but \divide,
\Divide and \sqroot take time proportional to the
answer.

(iii) The method by which recursion can allow

a macro to apparently accept any number of argu-
ments is best illustrated by an example. The macro
\options below will accept any number of single
character arguments, each of which will presumably
cause some useful action. If an 3" occurs i t must be
followed by two arguments (which somehow belong
to the x). Also, a "d" implies a " jn as well. The end
of the argument list is indicated by a period. A poe-
sible call would be "\options rx<30pt3€75pt)d. ".

A macro of this sort is invaluable in writing a
general purpose macro package, especially one to be
used by many people. A large number of different
style options can be pruvided, and each user can
easily select any combiiation.

Reseaxch Problems:

(1) Speed up \dioide and \sqraot.

(2) Wte a macro which tests two character strings
for a character in common. Then dream up an
application.

4. Pictures
In this section we describe a few macros which can

facilitate the drawing of complicated diagrams. The
two macros at the heart of the method are these:

\def \picture#l#2#3#4\endpicture<<\v~trl
\ v h to #2(\vss\hbox to #3<\! ~\hse))))

\def \put#l (#a, #3) (\raise#3vu\hbox to Opt
(\hs~p#2vu#l\hss~\ !

The result of \picture(dimenl)(dimen2)
(dirnen3)(hlist)\endpicture is a vertical box of
height (dimens) containing a horizontal box of width
(dimens) which contains (hlist). (dimen1) be-
comes lvu. Each position in the picture has coor-
dinates of the form (z, y), where x is the dis-
tance in vu from the left boundary and y is the
distance in vu from the bottom of the picture.
Thus (0,O) is the reference point of the picture.
To put (something) at position (36,475) simply
type \put(something) (36,475). The second coor-
dinate cannot be negative. Both coordinates can be
specified as the values of counters.

By putting \puts inside \puts, a temporary
change of origin can be affected, allowing sections
of the picture, to be moved around in one piece. For
even greater flexibility, picture a \picture within
a \picture. (The inside \picture should be given
width zero.) The overall scale of the picture can be
adjusted by changing (dimenl).

Just for fun, we'll give macros for inserting
horiaontal or vertical rules info a picture and for
drawing dotted lines.

\def \line (11. #2) (113, Xa) (\put\aetcountS#4
\advcountSby-#2
\if pos8(\hekip-0.2pt
\mule depthopt vidthO.4pt heighc \cmt8vu>
\else~\setcount8#3\advcount8by-#l
\mule depth0.2pt width \countsvu
height 0.2pt) (ti, #2) 3

\def \apeck(\h~kip-0.3pt
\vnile height0.3pt depth0.3pt width0.6pt)

\def \dotliner1 (#a, 13) (~ 4 , #5) (\put
\speck (#2, #3) \setcount7#4
\sdvcount7by-#2\setcount8#5\.dvcotmteby-#3
\Mvide#l \into7\Mvide#l\into8
\sotcount5#2\aetcount6#3
\rep~a#i\tlmes\ad~~0unt5b~\co\mt7
\advcount6by\count8
\put\epeck(\count5, \couut6) \endropeat\ ! 3

\line ((coordsr)) ((coo~~s~)) will draw a solid
line between the points given. These must be
epecifled in the order leftright for a horiaontal rule

and bottom-top for a vertical rule.

TUGboat, Volume 2, No. 2

\dot1 ine(va1ue) ((coords ((coords2)) will
draw a dotted line consisting of (value)+l \specks
between the points specified, which can be given in
either order. The last \speck can be misplaced by
up to (va1ue)vu due to rounding error, so Ivu should
be smdl if (value) is large. \dotline can be used
to make solid diagonal lines by placing many small
dots very close together, but you won't get far before

runs out of space. Both \line and \dotline
will only accept integer coordinates, but this is no
restriction if lvu is small.

\picture can also be used as a very versatile
and simple to use system for creating complikted

symbols, like @.
We conclude with a couple of more complicated

\pictures. Here is the source for the second:

\def \overt~\lorer2.5pt\hbox
<\hskip-2.3pt\ :u\char '533

\dei\cvert<\lower2.5pt\hbox
<\hskip-2.3pt\ : u\char '173)

\picture€O. 083pt)<eizd<siae>
\setcountcl 5000\setcount5 4980
\setcount6 4620\setcount7 0
\while4<\setcount3 3800\setcount2 3780
\setcount1 3420
\while3\if even7
C\put\overt(\count3, \count41)\else
(\put\cvert (\count3, \count4))\if poel(\line
(\countl, \count4> (\count2, \count4))\elseO
\ifpos6(\line
(\count3. \count6) (\come, \count5))\else0
\advcount7\advcountlby-400\advcount2by-400
\advcount3by-400\endrhile
\advcount7\advcount4by-400\advcount5by-400
\advcount6by-40O)\endrhile

\endpicture

T U G W , Vdwm 2, No. 2

