TEXML: Typesetting XML with TeX

Douglas Lovell
IBM Research
P.O. Box 704
Yorktown Heights, NY 10598
dcl@us.ibm.com

Abstract

XML, eXtensible Markup Language, is a simplified subset of SGML, which is fast becoming a standard for content management on the internet.

TEXML is an XML vocabulary for TeX. A processor written in the Java programming language translates TEXML-conforming XML into TeX. The processor provides a document formatting solution for XML that leverages the rich knowledge and capability built over many years in TeX.

This describes the TEXML document format and the processor, TEXMLattività, that produces TeX source from XML markup.

XML: The future of the Web

The World Wide Web is moving toward a future in which XML, not HTML, is the primary medium for storing and delivering documents and data.

HTML is presentation markup for browsers. Together with Cascading Style Sheets (CSS) it specifies the type sizes and fonts, and layout of a document.

XML is a standard for defining and sharing data on the Web, including Web content. Users of XML may define vocabularies — sets of tags or element names, such as “title,” “section,” “citation” and attributes such as “id” — to identify elements and structures in a document. With XML, organizations can develop markup which captures the structural and semantic properties of their documents and data. Instead of writing, `<H1>Typesetting XML</H1>` we can write, `<title>Typesetting XML</title>`.

Trade organizations, companies, and scientific or educational institutions may define and share XML vocabularies to freely exchange data with specific meaning. MathML (W3C, 1998), the vocabulary for writing and exchanging mathematical formulas and expressions, is one example.

In the commercial world, XML is a key technology for the widespread implementation of rapid, accurate, meaningful, automatic transactions and data exchange on the internet.

What is XSL?

XSL, eXtensible Stylesheet Language, is a W3C draft recommendation (XSL Working Group W3C, 1998) which began life as an XML vocabulary for typesetting. XSL is influenced by the DSSSL standard (ISO/IEC, 1996).

DSSSL is an ISO standard for typesetting SGML. The XSL effort began as a means for transforming XML markup into standard presentation markup, just as DSSSL did for SGML. A goal for XSL was to write a shorter, more perspicuous standard in the spirit of XML. Some of the key people who worked on DSSSL are key people working on XSL.

XSL does two things for XML:

1. It provides a language for specifying transformations from one XML vocabulary into another. The XSL specification calls this “Tree Construction.”

2. It defines a set of XML elements, called “formatting objects”, for encoding a typeset document specification in XML.

Figure 1 diagrams the heritage of XML and XSL from SGML and DSSSL. HTML is an SGML vocabulary which is migrating to an XML vocabulary.
What is \TeX/XML?\
\TeX/XML is an XML vocabulary for representing \TeX source. It is a medium for transforming any XML data into a document which can be typeset with the \TeX program. \TeX/XML represents the \TeX commands, control symbols, and \texttt{\special}s as XML elements. Figure 3 shows the markup of Figure 2 represented in \TeX/XML.

The potential for \TeX and XML\
XML makes \TeX a potential universal typesetting back-end for markup in a way it never achieved for SGML. There is an opportunity for \TeX to marry itself to XML, the future of the WWW, and become a predominant technology for typesetting.

\TeX has many advantages. It has an established, stable implementation and user base. It has a rich body of knowledge and experience captured in its macro packages and styles. It can typeset just about anything.

The missing piece is a small implementation of \TeX in the Java programming language which can be plugged into a browser or executed on a server; however, much of \texttt{\TeX} can be displayed by IBM techexplorer (Sutor and Díaz, 1998).

The enabling technologies now available are \TeX/XML and XSL, with platform-specific implementations of \TeX or with the IBM techexplorer plug-in for an HTML browser.

\TeX/XML Tree Construction. The transformation part of \TeX has been moving rapidly toward completion as a W3C recommendation. There are many implementations of the XSL transformation rules. In the process, people have found uses for XSL transforms far beyond producing typeset documents.

There are numerous web servers busily transforming XML into HTML using XSL style sheets. Microsoft is supplying the transform as a dynamic link library in their operating system. The Microsoft Internet Explorer Web browser (v.5) can accept XML data, apply an associated XSL transform, and display the result. Organizations use XSL style sheets to transform electronic data from another organization into a form suitable for internal use.

XSL has thus become an important tool for XML transformation. It is on the verge of becoming a \textit{de facto} standard for XML transformations.

Figure 4 shows an XSL stylesheet that will transform the artist XML example in Figure 2 into the \TeX/XML example in Figure 3.

\TeX/XML Formatting Objects. The formatting objects (FO) part of XSL is progressing more slowly. The specification of FO elements and the structure of those elements is far behind the transformation part as of this writing (March, 1999). This means that, while there is a “standard” way to transform XML into HTML, there is presently no standard way to produce typeset output from XML. \TeX/XML was developed partly out of impatience to fill this gap left by the lagging FO effort. It marries the transformation function of XSL with the typesetting function of \TeX. It provides a means for typesetting XML documents.

How to use \TeX/XML\
\TeX/XML consists of two parts. The first part is the document type declaration (DTD), which defines XML that is valid \TeX/XML. The second part is the translator program \TeX/XMLLatté, written in the Java programming language. \TeX/XMLLatté reads a valid \TeX/XML file and writes a proper \TeX file. The \TeX/XML DTD appears as Figure 5.

The basic template for a \TeX/XML document is:
\begin{verbatim}
<?xml version="1.0"?>
<TeXML>
 ... your content here ...
</TeXML>
\end{verbatim}

The following sections describe how the DTD and \TeX/XMLLatté interact, and how to code \TeX in \TeX/XML.

Encoding commands. The \TeX/XML \texttt{\<cmd\>} element encodes \TeX commands.

1. To write a command with no parameters, such as \texttt{\par}, write \texttt{\<cmd name="par"/>}.

2. To add parameters to a command, add \texttt{\<parm\>} children\footnote{XML elements embedded within an enclosing element are often referred to as that element’s “children,” e.g. \texttt{\<parent\><child/\</parent\>}.} to the \texttt{\<cmd\>} element. \TeX/XMLLatté places \texttt{\<parm\>} children within \TeX groups, that is, curly braces.

3. To add options to a command, add \texttt{\<opt\>} children to the \texttt{\<cmd\>} element. \TeX/XMLLatté
<?xml version='1.0'?>
<artist>
 <id>Weston</id>
 <fullName>Edward Weston</fullName>
 <lastName>Weston</lastName>
 <firstName>Edward</firstName>
 <birthYear>1886</birthYear>
 <deathYear>1958</deathYear>
 <portrait>Weston.jpg</portrait>
 <bio>Weston was a photographer who pioneered the modern use of photography as an art form in the United States.</bio>
 <longQuote1>One does not think during creative work, any more than one thinks when driving a car. But one has a background of years - learning, unlearning, success, failure, dreaming, thinking, experience, all this - then the moment of creation, the focusing of all into the moment. So I can make 'without thought,' fifteen carefully considered negatives, one every fifteen minutes, given material with as many possibilities. But there is all the eyes have seen in this life to influence me.</longQuote1>
 <shortQuote1>My own eyes are no more than scouts on a preliminary search, for the camera’s eye may entirely change my idea.</shortQuote1>
 <shortQuote2>Ultimately success of failure in photographing people depends on the photographer’s ability to understand his fellow man.</shortQuote2>
</artist>

Figure 2: XML markup describing an artist

places <opt> children within square braces, as \TeX style options.

As an example, the \TeX code
\documentclass[12pt]{letter}
will look like this in XML:
<cmd name="documentclass">
 <opt>12pt</opt>
 <parm>letter</parm>
</cmd>

The \TeXXML DTD allows free-form text, commands, control symbols, and \specials as children of <parm> and <opt> elements. It does not allow <parm> or <opt> elements to nest, except as children of a nested <cmd>. It does not allow environments within a <parm> or an <opt>.

Encoding control symbols. The <ctrl> element encodes a control symbol, such as <ctrl ch=" "> for a control space. Use the <cmd> element to encode control words.

Encoding specials. \TeXXMLlatte "escapes" any and all \TeX \specials which occur in the XML source. This means that backslashes, percent signs, dollar signs, and the like are properly escaped by the time they get to \TeX. The writer of XML will not intend those characters to be special. Figure 6 gives a full list of the characters escaped by \TeXXMLlatte, along with their replacement text.

Use the <spec> element to encode any \TeX \specials when you really want them to occur as \specials in the \TeX file output by \TeXXMLlatte.

The <spec> element is always empty; that is, it never has anything within it. Encode the category
Edward Weston was born in 1886. Weston lived until 1958. Weston was a photographer who pioneered the modern use of photography as an art form in the United States.

Some short quotes from Weston:

- “My own eyes are no more than scouts on a preliminary search, for the camera’s eye may entirely change my idea.”
- “Ultimately success of failure in photographing people depends on the photographer’s ability to understand his fellow man.”

A longer quote:

“...One does not think during creative work, any more than one thinks when driving a car. But one has a background of years - learning, unlearning, success, failure, dreaming, thinking, experience, all this - then the moment of creation, the focusing of all into the moment. So I can make 'without thought,' fifteen carefully considered negatives, one every fifteen minutes, given material with as many possibilities. But there is all the eyes have seen in this life to influence me.”
Figure 4: XSL markup to transform XML for an artist into TeXML

TeXML: Typesetting XML with TeX
Douglas Lovell

<?xml version='1.0'?>
<!--* DTD for translation to TeX *-->

<!ENTITY % content "#PCDATA|cmd|env|ctrl|spec">

<!ELEMENT TeXML (%content;)*>
<!ELEMENT cmd (opt|parm)*>
<!ATTLIST cmd name CDATA #REQUIRED>
<!ELEMENT opt (#PCDATA|cmd|ctrl|spec)*>
<!ELEMENT parm (#PCDATA|cmd|ctrl|spec)*>
<!ELEMENT env (%content;)*>
<!ATTLIST env name CDATA #REQUIRED>
<!ATTLIST env begin CDATA #IMPLIED>
<!ATTLIST env end CDATA #IMPLIED>
<!ELEMENT ctrl EMPTY>
<!ATTLIST ctrl ch CDATA #REQUIRED>
<!ELEMENT group (%content;)*>
<!ELEMENT spec EMPTY>
<!ATTLIST spec cat (esc|bg|eg|mshift|align|parm|sup|sub|comment|tilde) #REQUIRED>

Figure 5: The DTD for \TeXML

<table>
<thead>
<tr>
<th>description</th>
<th>ch attribute</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>escape character</td>
<td>esc</td>
<td>\</td>
</tr>
<tr>
<td>begin group</td>
<td>bg</td>
<td>{</td>
</tr>
<tr>
<td>end group</td>
<td>eg</td>
<td>}</td>
</tr>
<tr>
<td>math shift</td>
<td>mshift</td>
<td>$</td>
</tr>
<tr>
<td>alignment tab</td>
<td>align</td>
<td>&</td>
</tr>
<tr>
<td>parameter</td>
<td>parm</td>
<td>#</td>
</tr>
<tr>
<td>superscript</td>
<td>sup</td>
<td>-</td>
</tr>
<tr>
<td>subscript</td>
<td>sub</td>
<td>-</td>
</tr>
<tr>
<td>tilde</td>
<td>tilde</td>
<td>~</td>
</tr>
<tr>
<td>comment</td>
<td>comment</td>
<td>%</td>
</tr>
</tbody>
</table>

Figure 7: `<spec>` “ch” attribute values

of the special from Figure 7 in the required “ch” attribute (e.g. `<spec ch="bg"/>`). The translator will output the character indicated in the table. It is possible to foil this by changing the category of the character output by the translator, so beware.

End-of-line characters (\TeX{} category 5) are treated as space by XML. \TeXML\L\'ett\'e substitutes a space (\TeX{} category 10) character for the end-of-line character. There is no way to encode the end-of-line character in \TeXML. Paragraph breaks must be coded with `<cmd name="par"/>`.

There is no need to encode the ignored character (\TeX{} category 9). If it is to be ignored, there is no reason to put it in. The same is true of the invalid character (\TeX{} category 15).

Encoding environments. The element `<env>` is a convenience for expressing \LaTeX{} environments. To have \TeXML\L\'ett\'e output:

```
\begin{document}
...
\end{document}
```

we write in \TeX{}:

```
<env name="document">
...
</env>
```

The `<env>` element is not strictly required. It is supplied because it correctly captures in XML the spirit of an environment: it opens a context which is later closed. It is also much more convenient to use than the alternative method, using the `<cmd>` element:

```
<cmd name="begin">
```
TEXML: Typesetting XML with TeX

TEXMLatté supplies the default values, “begin” for the begin attribute, and “end” for the end attribute of an <env>. If you have an environment which uses a different convention for the begin and end commands you will specify the “begin” and “end” attributes. For example, the following produces an environment that begins with \s(t) and ends with \e(t).

<env name="t" begin="s" end="e">
 ET phone home!
</env>

Any TeXML content may appear within an environment.

Encoding groups. The <group> element is a convenience for encoding groups.

TeXMLatté will supply an open brace at the beginning, and a close brace at the end of the group. The TeX scrap, \{it italics\} may appear as

<group><cmd name="it">italics</group>.

This is much easier to write than

<spec cat="bg"/>
<cmd name="it"/>
italics
<spec cat="eg"/>

There is some technical advantage as well as convenience. The <group> element allows the XML parser to catch any missing close brace by the absence of the close group (<group>). XML cannot detect a missing <spec cat="eg"/>.

Any TeXML content may appear within a group.

Conclusion

XML is taking the world by storm. IBM is committed to making XML a viable and widely adopted standard for engaging in electronic commerce and publishing on the internet.

IBM’s TeXML provides an immediate solution for typesetting any XML content. It positions TeX as a potential typesetting back-end for internet publishing and electronic commerce applications.

Figure 8 displays the TeX resulting from processing the XML of Figure 3 with TeXMLatté.

A How to get TeXML

TeXML is available for download from the IBM AlphaWorks website:

http://www.alphaworks.ibm.com

Look for “TeXML.” You will find full source, instructions, and examples at the site.

You will need the following in addition to the files provided there:

An XSL implementation. We have used the Lotus implementation, which you may download from the IBM AlphaWorks web site. Look for “LotusXSL.” You will find references to more implementations at the W3C XSL website:

http://www.w3.org/Style/XSL/

A java runtime implementation. You will find these at the JavaSoft website:

http://www.javasoft.com

Look for “Java runtime” under “products.”

An XML parser. TeXMLatté uses the XML4J parser available from the IBM AlphaWorks web site. Look for “xml4j.”

A LaTeX implementation. You will find references to these at the TeX Users Group website:

http://www.tug.org/

References

Douglas Lovell

\documentclass{article}
\title{Edward Weston}
\begin{document}
\maketitle
\section*{Some biographical information}
Edward Weston was born in 1886. Weston lived until 1958.
\par
Weston was a photographer who pioneered the modern use of photography as an art form in the United States.
\section*{Some short quotes from Weston}
\begin{enumerate}
\item "My own eyes are no more than scouts on a preliminary search, for the camera’s eye may entirely change my idea."
\item "Ultimately success of failure in photographing people depends on the photographer’s ability to understand his fellow man."
\end{enumerate}
\section*{A longer quote}
\begin{quote}
"One does not think during creative work, any more than one thinks when driving a car. But one has a background of years - learning, unlearning, success, failure, dreaming, thinking, experience, all this - then the moment of creation, the focusing of all into the moment. So I can make 'without thought,' fifteen carefully considered negatives, one every fifteen minutes, given material with as many possibilities. But there is all the eyes have seen in this life to influence me."
\end{quote}
\end{document}

\textbf{Figure 8:} The \TeX{} produced by \TeXMLatté using the XML of Figure 3