
22εε∗∗Vancouver
August 

New Interfaces for LATEX Class Design

LATEX3 project

David Carlisle

Computational

Mathematics Group

NAG Limited, UK

Frank Mittelbach

Informationstechnologie

und Service

EDS, Germany

Chris Rowley

Faculty of Mathematics

and Computing

Open University, UK



These are the slides and speaker notes for the talk given at TUG99

at Vancouver BC, August 18 1999.

They were not originally intended for public distribution but are being

made available at the request of several members of the audience.

1-1



22εε∗∗
Vancouver
August 

LATEX2ε∗?



+ +

WWW

What is LATEX2ε∗?

Why LATEX2ε∗?

When LATEX2ε∗?

+ New Interfaces for LATEX Class Design 3



LATEX2ε∗ is a collection of packages that run on top of LATEX2ε
and provide new concepts for various aspects of LATEX2ε
including

– Class design interface

– Document syntax declaration

– . . .

The biggest open issue for LATEX3 is the missing design interface.
Work on this showed that one has to overcome several internal
flaws of LATEX’s kernel. Thus providing a prototype designer
interface resulted in rewriting large parts of the LATEX2ε kernel
at the same time.

To allow for widespread use during the development phase the
work is based (for the moment) on top of LATEX2ε.

First (partial) release is expected this year; final release as Y2K
software — perhaps by then it will become LATEX3.

3-1



22εε∗∗
Vancouver
August 

Document syntax declaration

LATEX2.09 ↪→ LATEX2ε ↪→ LATEX2ε∗



+ +

Declaring document syntax in LATEX2.09

\newcommand\foo[〈num〉]{...}
\newenvironment{baz}[〈num〉][{...}{...}

Declaration supports only commands and environments with

mandatory arguments

No support for declaring commands with optional arguments or

star forms or picture coordinate arguments

Newly declared commands always accept multiple paragraphs in

their arguments

+ New Interfaces for LATEX Class Design 5



+ +

Declaring document syntax in LATEX2ε (0)

\newcommand\foo[〈num〉][〈default〉]{...}
\renewcommand*\bar[〈num〉][〈default〉]{...}
\newenvironment{baz}[〈num〉][〈default〉]{...}{...}

Declarations of commands and environments with one optional

argument possible (always the first argument optional)

Declaration of commands possible that do not accept multiple

paragraphs in their arguments

+ New Interfaces for LATEX Class Design 6



+ +

Declaring document syntax in LATEX2ε (1)

\def\parbox{%

\@ifnextchar[%]

\@iparbox

{\@iiiparbox c\relax[s]}}

\def\@iparbox[#1]{%

\@ifnextchar[%]

{\@iiparbox{#1}}%

{\@iiiparbox{#1}\relax[s]}}

\def\@iiparbox#1[#2]{%

\@ifnextchar[%]

{\@iiiparbox{#1}{#2}}%

{\@iiiparbox{#1}{#2}[#1]}}

\long\def\@iiiparbox#1#2[#3]#4#5{\leavevmode ... }

+ New Interfaces for LATEX Class Design 7



The first example is from the LATEX kernel itself. Two questions:

You all know the \parbox command, but even so, can you tell the

number of optional and mandatory arguments it offers?

Can you tell from looking at this code (easily)?

Do you consider \@iiiparbox an acceptable interface to its

functionality?

7-1



+ +

Declaring document syntax in LATEX2ε (2)

\newcommand\chapter{\if@openright\cleardoublepage

\else\clearpage\fi

\thispagestyle{plain}%

\global\@topnum\z@

\@afterindentfalse

\secdef\@chapter\@schapter}

\def\@chapter[#1]#2{\ifnum \c@secnumdepth >\m@ne

\refstepcounter{chapter}%

\typeout{\@chapapp\space\thechapter.}%

... }

\def\@schapter#1{\if@twocolumn

\@topnewpage[\@makeschapterhead{#1}]%

\else

... }

+ New Interfaces for LATEX Class Design 8



Second example, this time from the report class.

Here we have a mixture of semantics (for example, “no top floats on

this page” and “no indentation after this heading”) intermixed with

document command syntax, that is: “run \@schapter code if you

parse a star”, or “use mandatory argument as optional argument if

none is given”, etc.

So how can we do better? We could, for a start, try to fully separate

input syntax from formatting and processing issues.

8-1



+ +

Declaring document syntax with xparse (1+2)

\DeclareDocumentCommand \parbox { O{c} o O{s} m m}

{

\ltx@parbox {#1} {#2} {#3} {#4} {#5}

}

\DeclareDocumentCommand \chapter { s o o m }

{

\UseInstance {heading} {A-heading}

{#1} {#2} {#3} {#4}

}

+ New Interfaces for LATEX Class Design 9



Without going into too much detail at this point: what do we have here? (Both
are hypothetical examples)

In case of the \parbox declaration we have an internal command (\ltx@parbox)
that does the actual formatting taking a fixed number of mandatory arguments.
The document level syntax for \parbox is specified in the second argument to
\DeclareDocumentCommand showing that \parbox will scan up to three optional
arguments (providing certain defaults for some of them if missing) followed by two
mandatory arguments.

You may wonder what happens with the second optional argument if not present:
you will learn about this later on.

In case of the \chapter command we see a specification for the document level
syntax of an optional star to parse, followed by up to two optional arguments
(this time without any default values) followed by a mandatory argument. The
internal command being called is some strange beast called \UseInstance which
we will learn more about later on. What is important though is that this internal
command again as a normalised number of arguments (always 4).

So let’s look at that interface a little closer.

9-1



22εε∗∗The xparse interface

To specify a command with a LATEX-like argument syntax

\DeclareDocumentCommand 〈cmd〉 { 〈arg-spec〉 }{ 〈code〉 }

〈cmd〉 is the name of the document-level command to be defined

〈arg-spec〉 specifies the syntax of this command’s arguments

〈code〉 uses normal TEX arguments #1, #2, . . . , #n, where n is the

number of ‘implicit’ arguments present.

Thus, when 〈cmd〉 is used, 〈code〉 is run as if a command with only

mandatory arguments had been there.



22εε∗∗The xparse interface (arg-spec)

m will return the parsed argument surrounded by a brace pair, i.e.,
will normally be the identity

o will return the parsed argument surrounded by a brace pair if
present. Otherwise it will return the token \NoValue

O{...} will return the parsed argument surrounded by a brace pair if
present. Otherwise it will return a default value which has to be
specified within the brace group following the O

s will return either the token \BooleanTrue or \BooleanFalse

depending on whether or not a star was parsed

c will parse the syntax (〈x〉,〈y 〉), i.e., a coordinate pair and will
return the values for the x- and y-coordinate as two arguments
each surrounded by braces



22εε∗∗The xparse interface (arg-spec)

How to transform the document-level arguments into mandatory
arguments (alternate presentation by Mr. anonymous)

spec arg-type transform

m mandatory {〈doc-arg〉}

o optional
{〈doc-arg〉}
\NoValue

O{〈default〉} optional
{〈doc-arg〉}
{〈default〉}

s star?
\BooleanTrue

\BooleanFalse

c co-ordinate
pair (〈x〉,〈y 〉) {〈x〉}{〈y 〉}



You will notice that all argument specifiers will result in returning

either the parsed argument in a brace group or will return a single

token. This means that there will always be the same number of

arguments that can be passed to the function or functions that

do the formatting. More precisely, the internal command has only

mandatory arguments.

Since the parsed arguments are available as #1, #2, etc., there

is a limit of up to nine such arguments (in case of coordinate

specifications even less since they return two brace groups each).

However for practical purposes this should be by far enough. This

could be changed so that, for example, the x- and y-bits of a

coordinate are returned as (transformed to) {{x}{y}}.

12-1



+ +

Not supported by xparse (yet?)

Optional coordinate specification

Variant syntax forms, e.g,

\newtheorem{〈name〉} {〈caption〉}[〈within〉]
\newtheorem{〈name〉}[〈numbered-like〉]{〈caption〉}
or

\section * {〈heading〉}
\section [〈toc〉]{〈heading〉}

+ New Interfaces for LATEX Class Design 13



Perhaps some of these features will get added if it turns out that

they are important enough.

While some of you may think that the specification possibilities

offered by xparse are neat (I think they are) — they are not that

important.

What is more important is that there is now a clear separation

between functionality and document level syntax, which means that

either can be individually replaced.

The document syntax can be completely new: for example, it can

use an XML vocabulary, with elements and entities expressed in

XML syntax.

13-1



+ +

A Finitial example :-)

\Agood initialmight look like this?"

Infandum, regina, iubes renovare

dolorem, Troianas ut opes et lamen-

tabile regnum cruerint Danai; quaeque

ipse miserrima vidi, et quorum pars ma-

gna fui. Quis talia fando Myrmidonum

Dolopumve aut duri miles Ulixi tem-

peret a lacrimis?

produced by

\Initial[‘‘]{A}[good initial] might look like this?’’ ...

+ New Interfaces for LATEX Class Design 14



+ +

A Finitial example :-))

A new document command (with no code yet):

\DeclareDocumentCommand \Initial {omo}

{

%% Produces a special treatment of the

%% first letter, or words, of a paragraph

%% #1 o : text that may be before the initial letter

%% #2 m : the initial letter

%% #3 o : other text that may require special treatment

%% <<CODE GOES HERE>>

}

with typical usage:

\Initial[‘‘]{A}[good initial] might look like this?’’ ...

\Initial But it might look like this perhaps? ...

+ New Interfaces for LATEX Class Design 15



+ +

An Finitial example :-)))

Outline code:

\DeclareDocumentCommand \Initial {omo}

{

%% The command \MakeInitial is the formatter that produces

%% an initial character (argument 2) at start of paragraph

%% - preceeded by ‘‘quote’’ character(s) (argument 1)

%% unless argument 1 is the token \NoValue

%% - followed by a number of characters in a special font

%% (argument 3) unless argument 3 is the token \NoValue

\MakeInitial

{#1}{#2}{#3} }

+ New Interfaces for LATEX Class Design 16



22εε∗∗
Vancouver
August 

Providing customisable layout

Templates and their Instances



+ +

Templates

Syntactically:

A Type and a Template-Name

Set of named attributes

Fixed number of mandatory arguments

Code

Semantically:

Receives document input through mandatory arguments

Manipulates this input (and possibly further parts of the
document) by executing Code

Processing of Code is controlled through the named attributes

+ New Interfaces for LATEX Class Design 18



The concept of templates and their instances is central to the new

interface for class file design so we are going to look at this in some

detail.

18-1



+ +

Template examples (1)

Type: hyphenation

Args: none

Semantics: Sets up hyphenation mechanism

Name: TeX

Keys: uchyph hyphenpenalty exhyphenpenalty ...

Name: std

Keys: hyphen-disable-boolean

hyphen-uppercase-boolean ...

+ New Interfaces for LATEX Class Design 19



+ +

Template examples (2)

Type: initial

Args: 1,3 (\NoValue or string) 2 (string)

Semantics: Sets up an initial character at start of paragraph
followed by a number of characters formatted
in a special font.
Handles quotes to the left of the initial if any.

Name: std

Keys: initial-font initial-format text-font

parshape-list v-adjust h-adjust ...

+ New Interfaces for LATEX Class Design 20



Such templates can be directly applied, by providing (suitable)

values for their keys and passing them the appropriate number of

arguments.

Here we see an example. . .

20-1



+ +

Template usage (direct)

\UseTemplate{initial}{std}

{initial-font = \fontfamily{pop}\fontsize{40}{40}\selectfont,

text-font = \scshape,

text-sep = 3pt,

parshape-list = {-5pt,0pt},

v-adjust = 0pt, h-adjust = -1pt,

quote-sep = -5pt,

quote-format = \LARGE #1,

}

{‘‘}{A}{good initial} might look like this?’’ ...

\Agood initialmight look like this?"

Infandum, regina, iubes renovare

dolorem, Troianas ut opes et lamen-

tabile regnum cruerint Danai; quaeque

ipse miserrima vidi, et quorum pars ma-

gna fui. Quis talia fando Myrmidonum

Dolopumve aut duri miles Ulixi tem-

peret a lacrimis?

+ New Interfaces for LATEX Class Design 21



We see that

the font for the initial character is chosen to be 40pt Optima

that the text following it is set in small capitals

that the initial is dropped two lines into the text and that the

shape of the paragraph follows the shape of the letter A

. . .

We also see that it would be a nightmare if we would have to specify

this type of input over and over again in a source document.

Which brings us to the concept of named instances of a template

. . .

21-1



+ +

Instances

Syntactically:

A Type, a (new) Instance-Name, and a Template-Name

Set of attribute/value pairs for the Template

Semantically:

Evaluates attribute values at declaration-time using calc

expression syntax for dimensions and counters

Value evaluation can be explicitly delayed to happen at run-time

At run-time applies Template-Code using stored attribute values

to process document input

+ New Interfaces for LATEX Class Design 22



+ +

Instance declaration and usage

\DeclareInstance{initial}{A}{std}

{initial-font = \fontfamily{pop}\fontsize{40}{40}\selectfont,

text-font = \scshape,

text-sep = 3pt,

parshape-list = {-5pt,0pt},

v-adjust = 0pt, h-adjust = -1pt,

quote-sep = -5pt,

quote-format = \LARGE #1,

}

\UseInstance{initial}{A}{‘‘}{A}{good initial}

might look like this?’’ ...

+ New Interfaces for LATEX Class Design 23



Still not very useful this way; the difference to the example with

\UseTemplate is

Frozen set of attributes so that the the particular incarnation of

this template can be easily (and identically) replicated.

The resulting “layout” is named rather than explicit and thus

can be changed consistently by modifying it in one place, i.e.,

the instance declaration.

The run-time usage is faster in processing as all the attribute

values are preparsed and are at run-time assigned via primitive

TEX operations rather than calc processing.

So to make further use of this concept we could apply xparse to

provide a high-level document interface . . .

23-1



+ +

Instance usage with together with xparse

\DeclareDocumentCommand \Initial {omo}

{

\IfExistsInstanceTF{initial}{#2}

{\UseInstance{initial}{#2}}

{\UseInstance{initial}{default}}

{#1}{#2}{#3}

}

\Initial[‘‘]{A}[good initial] might look like this?’’ ...

\Initial But it might look like this perhaps? ...

+ New Interfaces for LATEX Class Design 24



Explanation:

The \Initial command takes one mandatory argument and tests
if there exists an instance of type initial with the name of this
argument (in case of accented characters this would need to be
more elaborate).

If so it invokes this instance otherwise it invokes an instance
named default

Any quote character to the left of the initial character and any
text that should be typeset in a special font to the right can be
specified through optional arguments to the left and the right of
the mandatory argument.

This means that for setting up initials of a certain type, e.g.,
dropped, etc., one has to declare a default instance to cover the
general case and overwrite this for individual characters in case
they need special treatment.

24-1



+ +

Instance declaration with delayed evaluation

\DeclareInstance{justification}{raggedright}{TeX}

{leftskip = 0pt,

rightskip = \DelayEvaluation { 0pt plus 2em },

startskip = 0pt,

parfillskip = \fill,

spaceskip = \DelayEvaluation { \fontwordspace },

xspaceskip = \DelayEvaluation

{ \fontwordspace + \fontextraspace },

}

+ New Interfaces for LATEX Class Design 25



This example shows the use of delayed evaluation:

The justification type covers the typesetting of straight text

with respect to the margins.

The instance raggedright is supposed to produce unjustified text

with a ragged right margin.

For continuous text the behaviour of \raggedright as defined by

LATEX2ε is normally not desired as that command will always

break text at word boundaries.

Instead this instance will try to keep the “raggedness” within

certain limits. These are defined with respect to the current font

size and thus can’t be fixed until run-time.

For the same reason spaceskip and xspaceskip have to be

declared delayed as they depend on the font used.

25-1



+ +

The Template Type

Characterises the general behaviour of templates

Templates of the same type are “exchangeable”

– identical number of arguments

– identical interpretation of arguments

– comparable purpose (in a vague sense)

For this reason has to be declared via \DeclareTemplateType

+ New Interfaces for LATEX Class Design 26



So far we haven’t really given a good reason or example why there is

a template type. So here is an explanation of it purpose.

Except for the number of arguments nothing is in practice enforced.

I.e., if people would disobey the restriction posed by the template

type concept they will probably get documents that compile without

errors. However the resulting documents will most likely show

strange formatting.

So let’s look at an example for the use of templates types . . .

26-1



+ +

The Template Type (example)

To format list structures such as itemize there might be a template
type called list with the following characteristics:

Starts a list structure embedding it into the surrounding
formatting

Sets up a command \ListItem (one argument) to start a new
‘item’ of the list

Sets up a command \EndThisList to finish the current list
structure properly

Expects three arguments with the following semantics:

– String to calculate width of left indentation, or \NoValue

– Symbol/string to be used as item label, or \Novalue

– Boolean to denote whether or not numbering continues

+ New Interfaces for LATEX Class Design 27



The arguments have to be present but are allowed to be ignored by

templates of that type, e.g., for an inline list the argument specifying

indentation is irrelevant.

Ditto non-counting lists do not care about the third argument.

27-1



+ +

Template examples (3)

Type: list

Args: 3 (\NoValue or string each)

Semantics: Sets up a list environment

Name: vertical

Keys: measure-setup pre-vmaterial-setup

item-vmaterial-setup post-vmaterial-setup

justification-setup ...

Name: inline

Keys: pre-hmaterial-setup item-hmaterial-setup

post-hmaterial-setup item-label-text ...

+ New Interfaces for LATEX Class Design 28



This slide now shows two templates named vertical and inline

belonging to the template type list.

To build actual list layouts for a class one would produce instances

from these templates.

28-1



+ +

The Template Type interfaced with xparse

\DeclareDocumentCommand \item { o } { \ListItem {#1} }

\DeclareDocumentEnvironment {enumerate} { }

{\UseInstance{list}{enumerate} \NoValue \NoValue \BooleanFalse}

{\EndThisList}

\DeclareDocumentEnvironment{enumerate*} { }

{\UseInstance{list}{enumerate} \NoValue \NoValue \BooleanTrue}

{\EndThisList}

\DeclareDocumentEnvironment{itemize} { o }

{\UseInstance{list}{itemize} \NoValue {#1} \BooleanFalse}

{\EndThisList}

+ New Interfaces for LATEX Class Design 29



Here we see the mapping between the document level syntax and

the layout definitions.

First example is a standard enumerate as in LATEX2ε implemented

using the list template with an instance named enumerate.

Note that this declaration only fixes the document interface not its

layout! The enumerate instance might be derived from the template

for vertical lists or it might be an instantiation of the inline list

template or . . .

Second example defines a list that continues a previous enumeration.

Third example shows an ‘itemize’ list where the user can overwrite

the item label being used at the start of the list.

29-1



+ +

Template Declaration (technically)

\DeclareTemplateType{〈type〉}{〈arg-no〉}

\DeclareTemplate{〈type〉}{〈name〉}{〈arg-no〉}
{

〈key-name1〉 =〈key-type1〉 〈optional-default1〉 〈storage-bin1〉,
〈key-name2〉 =〈key-type2〉 〈optional-default2〉 〈storage-bin2〉,

...

}

{ 〈initial-code〉 \DoParameterAssignments 〈action-code〉 }

+ New Interfaces for LATEX Class Design 30



+ +

Template Declaration (technically 2)

The 〈key-name〉 is a string composed from the letters a–z, A–Z,
digits and/or hyphen characters.

The 〈key-type〉 is a string (typically a single letter) denoting the
type of the attribute, e.g., a l means a LATEX length register.
It might be optionally preceeded by a + which denotes that the
assignment is done globally.

The 〈optional-default〉 is the value to assign if no value is given
at instance declaration time. If present it is specified in brackets.

The 〈storage-bin〉 is the register, command, or whatever that
receives the value after evaluation.

Within the code, the \DoParameterAssigment denotes the place
where the run-time assignments to the 〈storage-bin〉s are
happening.

+ New Interfaces for LATEX Class Design 31



. . .

Instead of working through all the possibilities in theory let’s look

again at an example. Here is the part of the actual template

definition for initials (as of 31.7.99)

31-1



+ +

Template Declaration (technically 2)

\DeclareTemplate{initial}{std}{3}{

initial-font =f0 \initial@font,

initial-format =f1 [#1] \initial@boxhandling,

parshape-list =f0 [0pt] \initial@parshape,

v-adjust =L \initial@vadjust,

...

text-font =f0 [\scshape] \initial@shape,

}

{

\let\initial@vadjust\z@

...

\DoParameterAssignments

...

\IfValueT{#3}{ {\initial@shape #3} }

}

+ New Interfaces for LATEX Class Design 32



The key initial-font has no default specified. It is central to

the template and if missing will result in an error.

The key v-adjust has no default specified either. Instead

it gets its default in the 〈initial-code〉 section before the

\DoParameterAssignments. Both methods produce the same result

but differ in spacing requirements and speed (as well as ease to

read the code)

Last line of the 〈action-code〉 shows the handling of the third

argument to the template: test for the value not being \NoValue

and if so applying the value of the text-font attribute.

32-1



+ +

Template Declaration (technically 3a)

Attributes that receive names as values:

counter-id =n [\heading@id] \heading@counter,

Attributes that receive functions as values:

initial-font =f0 \initial@font,

initial-format =f1 [#1] \initial@boxhandling,

Attributes that receive dimensions as values:

pre-sep =l \topsep,

post-sep =L \botsep,

+ New Interfaces for LATEX Class Design 33



The type n expects to receive a LATEX name as a value. Used,

for example, to specify the name of a LATEX counter to use.

The type f〈num〉 expects a function with 〈num〉 arguments as a

value. The arguments are denoted by #1, #2, etc. In most cases

either f0 (for declarations) or f1 (to format one argument) are

needed.

As far as specifying instances the l and L type behave identically.

They differ only in the type of internal storage-bin they need: l

expects a length register while L expects an ordinary macro name

and assigns its value via \def.

There might be a need to distinguish between TEX’s dimen and

skip registers. Right now this is not done and both l and L

accepts what LATEX calls “rubber length” specifications.

33-1



+ +

Template Declaration (technically 3b)

Attributes that receive integers as values:

pre-penalty =c \@beginparpenalty,

penalty =C \hmaterial@penalty,

Attributes that receive template instances as values:

justification-setup =i{justification} \list@justification,

Usage within an instance declaration is either

justification-setup = raggedright,

i.e., name of a declared instance or a call to \UseTemplate

justification-setup = \UseTemplate{justification}{TeX}

{ startskip = 0pt, ... },

+ New Interfaces for LATEX Class Design 34



The c and C type receive integers as values. Again either of them

can be transparently used. In case of c the 〈storage-bin〉 has to

be a TEX count register not a LATEX counter name, i.e., set up

via \newcount. (LATEX counters can be used as well if they are

accessed via their internal name, i.e., via \c@〈LATEX-counter 〉)

The type i{〈type〉} takes as value the name of a declared

instance of that type. The 〈storage-bin〉 associated with the

key will store a command essentially equivalent to a call to

\UseInstance{〈type〉}{〈name〉}, but in a slightly optimised internal

form.

As an exception to this rule the replacement code may be of the

form \UseTemplate followed by the key settings for the template

but without the mandatory arguments. In this case the ‘inner’

instance declaration is ‘pre compiled’ and the token assigned to

the store the value assigned to this key will execute an instance

of the template directly, it will not re-parse the keyword settings

each time the instance is used.

34-1



+ +

Template Declaration (technically 3c)

Attributes that receive true or false values:

item-implicit-boolean =s

{ \def\item@implicit@code{\item\relax} }{},

numbered-boolean =b [true] @heading@nums,

Attributes that accept any value:

generic-key =g \typeout{#1},

extra-assigns =x \typeout{#1},

+ New Interfaces for LATEX Class Design 35



The type s expects the strings true or false as values. In this

case the declaration has no 〈storage-bin〉. Instead the declaration

consists of two brace groups containing code. Depending on the

value one of the groups gets copied verbatim into the internal

parameter list of the instance and gets executed at run-time at

the point where \DoParameterAssignments is seen.

The type b can probably vanish. It is equivalent to specifying the

mutators of a \newif command in the brace groups, e.g.

numbered-boolean =b [true] @heading@nums,

numbered-boolean =s [true] {\@heading@numstrue}

{\@heading@numsfalse},

35-1



The type g is a low-level specification which contains arbitrary

code in place of the 〈storage-bin〉. This code is evaluated at

declaration time of the instance and by default nothing is passed

to the internal parameter list (this has to happen explicitly from

within the code). #1 may be used to access the value specified.

The main purpose for this type is of historical nature (originally

most of the other types have been implemented internally using

g).

The type x also requires code in place of the 〈storage-bin〉.
However with this type all of the code is copied unevaluated to

the internal parameter list. There are some applications for this

type when implementing customisable defaults. However, it is

likely that it will not survive a final release.

35-2



+ +

Values depending on context

Attributes of type l, L, c, C, (registers) and n or f0 also support a

sort of case structure as their value of the following form:

〈key 〉 = \MultiSelection 〈counter 〉
{ 〈value1〉 ,

〈value2〉 ,

...

〈valuen〉 }

{ 〈valueotherwise〉 }

+ New Interfaces for LATEX Class Design 36



+ +

Values depending on context (example)

left-margin-width = \MultiSelection \@listdepth

{

\DelayEvaluation {2.5em},

\DelayEvaluation {2.2em},

\DelayEvaluation {1.87em},

\DelayEvaluation {1.7em}

}

{ \DelayEvaluation {1em} },

+ New Interfaces for LATEX Class Design 37



The actual syntax for such a multi-selection is still under discussion

(well everything to some extend is under discussion but . . . )

A possible alternative, or say variation, is to support a selection

based on label strings and there might be other good ideas waiting

to be discovered.

For the moment the way it is defined, it offers enough functionality

to provide instances in the way we wanted them.

37-1



+ +

Restricted Templates

Syntactically:

A Type, a (new) Template-Name, and an existing Template-Name

Set of attribute/value pairs for the Template

Semantically:

Evaluates attribute values like in Instance declaration

The restricted template behaves like the original template but

with some of the attributes (pre)set to fixed values

Restricted templates can be used to build further restricted

templates

+ New Interfaces for LATEX Class Design 38



Current implementation allows an instance to overwrite preset values

(this may change).

38-1



+ +

Restricted Templates (example)

\DeclareRestrictedTemplate{list}{vertical-std}{vertical}

{

left-margin-width = 20pt,

right-margin-width = 0pt,

...

justification-setup = raggedright,

item-accumulate-right-boolean = true,

item-implicit-boolean = false,

}

\DeclareInstance{list}{itemize}{vertical-std}{

item-label-text = \MultiSelection ...

}

+ New Interfaces for LATEX Class Design 39



+ +

Collections of Instances aka CollectionInstances

Syntactically:

A command (\DeclareCollectionInstance) to declare template
instances that belong to a named collection

A command (\UseCollection{〈name〉}{〈type〉}) to activate the
collection 〈name〉 for the template/instance type 〈type〉

Semantically:

If a collection for a template/instance 〈type〉 is activated, a call to
\UseInstance{〈type〉}{〈name〉} will first check if a corresponding
collection instance is defined and if so use that instance.

In no such instance is defined or no collection is active, the
standard instance of type 〈type〉 and name 〈name〉 (i.e., the one
defined via \DeclareInstance) is used.

By default no collection is active.

+ New Interfaces for LATEX Class Design 40



Collections provide a way to change the layout of certain

document commands on a regional level, e.g., a different

handling of front matter headings (while using the same

document commands) could be implemented by providing a

collection frontmatter for instances of type head (and perhaps

others) and switch to this collection within the front matter.

We will see an example for the use of collections when discussing

‘page styles’.

40-1



22εε∗∗
Vancouver
August 

Galleys



+ +

Some problems with LATEX2ε galleys

Competition: What are the effects of

1. \end{itemize} \vspace{3pt} \begin{itemize} ...

2. \section{HEAD} {\sc ABC} ...

3. \usepackage{hyperref}

4. {\section{HEAD}} para text \par \begin{itemize} ...

+ New Interfaces for LATEX Class Design 42



Last question might look like silly input but it can happen in various

ways one of which is \twocolumn[\section{foo}]!

42-1



+ +

Some problems with LATEX2ε galleys (answers)

1. \end{itemize} \vspace{3pt} \begin{itemize} ...

. . . not three points of extra space but 13 (with the article class)

2. \section{HEAD} {\sc ABC} ...

. . . page breaking restrictions apply to the second paragraph after

the heading

+ New Interfaces for LATEX Class Design 43



+ +

Some problems with LATEX2ε galleys (answers)

3. \usepackage{hyperref}

. . . the danger of completely changed vertical spacing because

the \specials added by hyperref interfere with the spacing and

penalty mechanisms

4. {\section{HEAD}} para text \par \begin{itemize} ...

. . . one gets an indentation after the heading; a page break might

happen after the first line in the paragraphs; and there will be no

space above the itemize environment (though there will be space

below) — because of this LATEX2ε claims this is incorrect input

:-)

+ New Interfaces for LATEX Class Design 44



+ +

Some problems with LATEX2ε galleys (solution)

Prohibit uncontrolled access to TEX’s vertical mode

Provide a data structure and mutator functions that access this

data structure in controlled ways

+ New Interfaces for LATEX Class Design 45



+ +

Galley data structures (needs)

Examples of TEX-level commands that need to be controlled in

vertical mode

Anything that produces a ‘whatsit node’ —

\special \write \mark (and many pdftex commands)

penalties and glue

In fact, everything you cannot see!

+ New Interfaces for LATEX Class Design 46



+ +

Galley data structures (needs)

The ideal structure for a vertical list:

〈visible material: a box〉

〈whatsits〉 (not ideal: needed only for stuff that should be inside

the last box but is ‘too late’)

〈single penalty 〉

〈at most one glob of glue〉

〈visible material: a box〉

+ New Interfaces for LATEX Class Design 47



+ +

Galley data structures (solutions)

Controlling vmode: \par

– Insert \nobreak

Controlling vmode: \everypar

– Insert data structure, e.g., penalty, glue, whatsits

Handling user-level stuff between paragraphs

– Keep separate data structure for user spacing (\vspace)

and layout spacing

– Attach whatsits and writes either to previous or upcoming

paragraph

Handling user-level page-control within paragraphs

– Control page breaking before and in paragraph

+ New Interfaces for LATEX Class Design 48



22εε∗∗
Vancouver
August 

Controlling Floats



+ +

LATEX2.09 and LATEX2ε

Each float is typeset in a box along with its captions.

Floats of a given type always appear in sequence.

A single float environment may contain multiple captions.

+ New Interfaces for LATEX Class Design 50



22εε∗∗
Flexible caption formatting

Neither the format nor the position of the caption is fixed at the

time the float is specified:

they may depend on the final area in which the float is positioned.

Templates will be provided that enable the specification of

differing layouts depending on the relative sizes of the float body

and caption, and the float area into which a float is being placed.



22εε∗∗
Flexible caption formatting (consequences)

Only one caption is allowed per float environment.

The float placement algorithm can now try differing caption

positions (below the body, to the side, in the margin,. . . ) This

flexibility lessens the chance of a float ‘failing to fit’ and being

deferred to the end of the document.

This allows for layouts where the formatting depends on the

positioning of the float, e.g., caption always in the outer margin.



22εε∗∗
LATEX2ε∗: Finer float positioning control

More general scheme that allows the positioning to depend on

the relation to the call-out, for example [hb|tp].

Mechanism to override all automatic float placement via an

external file that specifies exactly the page and area in which

each float should be placed.



[hb|tp] allows ‘here’ or ‘bottom’ on the page of the call-out; but

‘top’ or ‘float page’ on all subsequent pages.

This may be used to give manual control for final editing, or for

making revisions to a document without danger of triggering a

totally different float placement affecting all pages.

53-1



22εε∗∗
More float areas and different handling

Possible extensions being considered include:

Floats in the margin

Bottom floats in two column setting

Multi-column layout with column floats

Retry last float page as text floats to save space



22εε∗∗
Caption Positioning examples



22εε∗∗
Vancouver
August 

Page Layout



+ +

LATEX2.09 & LATEX2ε

Document level declarations accessing named page ‘styles’.

\pagestyle{headings}

\thispagestyle{empty}

Interactions with document structure are documented,

but cause surprises. . .

\pagestyle{empty} . . . \maketitle

+ New Interfaces for LATEX Class Design 57



The ‘surprise’ is that \maketitle expresses the semantic that ‘this

is a title page’ by running the command \thispagestyle{plain} thus

overriding the user specified page style.

Solution is to separate out the declaration of the ‘page type’ from

the specification of the formatting required.

57-1



+ +

Declaring a new page style in LATEX2ε

The following is taken from the source for the article class.

\if@twoside

\def\ps@headings{%

\let\@oddfoot\@empty\let\@evenfoot\@empty

\def\@evenhead{\thepage\hfil\slshape\leftmark}%

\def\@oddhead{{\slshape\rightmark}\hfil\thepage}%

\let\@mkboth\markboth

\def\sectionmark##1{. . . }%

\def\subsectionmark##1{. . .}}

\else

\def\ps@headings{%

. . . }

\fi

+ New Interfaces for LATEX Class Design 58



Currently LATEX gives no support for defining new page styles.

To define a page style to be accessed by \pagestyle{new} essentially

arbitrary code is used to define an internal command, \ps@new.

There are packages available to overcome some of the deficiencies,

e.g., fancyhdr.

58-1



22εε∗∗
Declaring Page Styles in LATEX2ε∗

Structural commands such as \maketitle and \chapter specify

the Page Type for a page (or range of pages).

Page Styles define a standard page format, and for any of the

page types, may specify a different format.

Page formats are specified as collections of instances of templates

of type pagestyle.



+ +

Page Types

The code for a document structure command can specify the

sequence of types of pages that should be used.

Some page types:

standard

title

preopening

opening

postopening

. . .

+ New Interfaces for LATEX Class Design 60



For example a chapter heading may produce a page of type

‘pre-opening’ in order to force the current page to be a recto (or

verso) page, followed by a page of type ‘opening’ that contains the

title of the chapter, and possibly the beginning of the chapter text.

60-1



+ +

Page Styles (1)

\DeclareInstance{pagestyle}{standard}{3part}

{ recto-head-left-action = \rightmark,

recto-head-right-action = \thepage,

head-rule-width = .4pt,

. . . }

\DeclareInstance{pagestyle}{opening}{3part}

{ recto-foot-center-action = \thepage ,

verso-foot-center-action = \thepage ,

. . . }

\DeclareInstance{pagestyle}{preopening}{3part} {}

+ New Interfaces for LATEX Class Design 61



The ‘normal’ page style is implemented as a collection of instances

of type pagestyle. In this case all are implemented as instances of a

template ‘3part’ that allows specification of head and foot sections

in three parts, with possible decorations such as rules. (The popular

fancyhdr package gives an interface to these types of page styles for

LATEX2ε.)

The standard layout is used on most pages, but opening pages (for

example chapter title pages) omit the headline information and

center the footline.

If a pre-opening page is produced to bring the opening page on to a

recto (odd) page then this will have blank head and foot.

61-1



+ +

Page Styles (2)

The examples used a template ‘3part’ which may be used to specify
simple ‘3 part’ structure of headline and footline.

More general templates will also be provided with more advanced
features.

Head and foot area extending into margins.

Altering the height of individual pages.

Altering the width (measure) of individual pages. (This feature
may only be used in restricted contexts due to limitations in
TEX’s page breaking algorithm.

Altering the position of text columns within the page.

. . .

+ New Interfaces for LATEX Class Design 62



+ +

Page Styles (3)

\DeclareDocumentCommand \pagestyle { m }

{ \UseCollection{pagestyle}{#1} }

\DeclareCollectionInstance{empty}{pagestyle}{standard}{3part}{}

\DeclareCollectionInstance{empty}{pagestyle}{opening}{3part}{}

\DeclareCollectionInstance{empty}{pagestyle}{preopening}{3part}{}

...

+ New Interfaces for LATEX Class Design 63



For classes with many layout variation possibilities a \pagestyle

command for changing the page style could be implemented by

changing the current collection of instances of type pagestyle.

An empty page style can, for example, be defined as a collection

of this type. (The example assumes that the 3part template has

default values for all of its keys that result in empty headers and

footers.)

In more complicated classes with ‘front matter’ and ‘back

matter’ parts the different regions could overwrite the page

type definitions by providing collections with suitable names and

internally switching to them.

63-1



22εε∗∗
Vancouver
August 

Front Matter (Journal Articles)



+ +

LATEX2.09 & LATEX2ε

The standard article class offers only very simple front matter

declarations, and in particular offers a single \author command that

is to be used to declare all authors and their addresses.

This model does not really support a typical multi-author,

multi-address journal article.

+ New Interfaces for LATEX Class Design 65



Many journal-specific classes support extended interfaces, but this

offers no document portability between classes, and there is no

interface to help the class designer implement an interface to front

matter declarations.

65-1



+ +

Front Matter Layout Templates (1)

By providing a range of templates for specifying front matter

formatting, LATEX2ε∗ enables a class designer to easily specify a wide

range of layouts that use the same document level commands.

The following slide shows one of the prototype template declarations

developed this spring.

+ New Interfaces for LATEX Class Design 66



+ +

Front Matter Layout Templates (2)

\DeclareTemplate{titlesetup}{std}{0}{

title-format =f1 \maketitle@title,

subtitle-format =f1 \maketitle@subtitle,

authors-format =f1 \maketitle@author,

addresses-format =f1 \maketitle@address,

abstract-format =f1 \maketitle@abstract,

author-setup =i{author} [simple] \do@author,

author-address-handling =n [grouped] \title@address@handling,

and-text =f0 [and] \andname,

formatting-sequence =f0 [{title,author,address,abstract}]

\maketitle@sequence,

}

+ New Interfaces for LATEX Class Design 67



Each attribute such as title-format receives as argument data from the document
level commands, in this case the argument from the command \title.

When declaring an instance of this template the class designer specifies, for each
such attribute, the commands code that format the text and adds any required
vertical space above the item.

The order in which the various fields are output may be specified by giving a
sequence, otherwise the default sequence is used.

The author-address-handling attribute controls whether authors are grouped by
address.

The author-setup attribute takes an instance of type author. The data structure
for authors is more complicated as each author is associated not just with a
name, but with one or more addresses, email, web home pages, and possibly other
information.

Templates of type author will be provided to handle this data structure.

67-1



+ +

Front Matter Document Commands

The document level commands for such a class, would be similar

to the current usage in amslatex classes, or revtex 4. However

the template interface makes it much easier to specify a range of

typographic styles for the same document markup.

In brief the document level syntax has one \author command for

each author, followed by \address, \email and similar commands.

Mechanisms to specify multiple authors sharing address, and also

multiple addresses for a single author will be implemented but are

not detailed here.

+ New Interfaces for LATEX Class Design 68



22εε∗∗
Vancouver
August 

The Status of LATEX2ε∗



+ +

Functional

Document command interface

Template/Instance interface

Galley data structure

Boxes with several reference points

List templates

Hyphenation and justification templates

Templates for initials

+ New Interfaces for LATEX Class Design 70



+ +

Proto-types (under the knife)

Heading templates

Table of contents templates

Front matter handling

Output routine redesign (float handling)

Data structure for multiple marks

Page layout handling

+ New Interfaces for LATEX Class Design 71


