
The Communications of the Users Group

Volume 14, Number 3, October 1993
1993 Annual Meeting Proceedings

T$jX Users Group Board of Directors

Memberships and Subscriptions Donald Knuth, Grand Wizard of l&X-arcanat

TUGboat (ISSN 0896-3207) is published quarterly Christina Thiele, President*

by the T$JX Users Group, Balboa Building, Room Ken Dreyhaupt*, Vice President

307, 735 State Street, Santa Barbara, CA 93101, Bill Woolf*, Treasurer

U. S. A. Peter Flynn*, Secretary

1993 dues for individual members are as follows:
Ordinary members: $60
Students: $30

Membership in the Users Group is for the
calendar year, and includes all issues of TUGboat
and lj$ and TUG NEWS for the year in which
membership begins or is renewed. Individual mem-
bership is open only to named individuals, and
carries with it such rights and responsibilities as
voting in the annual election. A membership form
is provided on page 361.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: North America $60 a year; all other countries,
ordinary delivery $60, air mail delivery $80.

Second-class postage paid at Santa Barbara,
C A, and additional mailing offices. Postmaster:
Send address changes to TUGboat, Users
Group, P. 0. Box 869, Santa Barbara, CA 93102-
0869, U.S.A.

Inst i tut ional Membership
Institutional Membership is a means of showing
continuing interest in and support for both 'QX
and the 'QX Users Group. For further information,
contact the TUG office.

TUGboat @ Copyright 1993, Users Group

Permission is granted to make and distribute verbatim
copies of this publication or of individual items from this

publication provided the copyright notice and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translw
tions of this publication or of individual items from this

publication into another language, under the above condi-
tions for modified versions, except that this permission notice

may be included in translations approved by the '&X Users

Group instead of in the original English.
Some individual authors may wish to retain traditional

copyright rights to their own articles. Such articles can be
identified by the presence of a copyright notice thereon.

Peter Abbott, Special Director for UKl&XUG
Barbara Beeton
Alain Cousquer, Special Director for GUTenberg
Luzia Dietsche
Michael Ferguson
Roswitha Graham, Special Director for

the Nordic countries
Yannis Haralambous
Doug Henderson
Alan Hoenig
Anita Hoover
Mimi Jett
David Kellerman
Kees van der Laan, Special Director for NTG
Joachim Lamrnarsch, Special Director for DANTE
Nico Poppelier
Jon Radel
Raymond Goucher, Founding Executive Directort
Hermann Zapf, Wizard of Fontst

*member of executive committee
t honorary

Addresses
General correspondence:
T$JX Users Group
P. 0. Box 869
Santa Barbara,

CA 93102-0869 USA

Telephone
805-963-1338

Fax
805-963-8358

Payments: Electronic Mail

Users Group (Internet)
P. 0. Box 21041 General correspondence:

Santa Barbara, TUGOtug.org

CA 93121-1041 USA Submissions to TUGboat:

Parcel post, TUGboatOMath.AMS.org

delivery services:
T$JX Users Group
Balboa Building
Room 307
735 State Street
Santa Barbara, CA 93101
USA

T@$ is a trademark of the American Mathematical
Society.

Printed in U.S.A.

1993 Annual Meeting Proceedings

'l&X Users Group

Fourteenth Annual Meeting

Aston University, Birmingham, England, July 26-30, 1993

COMMUNICATIONS OF THE USERS GROUP

TUGBOAT EDITOR BARBARA BEETON
PROCEEDINGS EDITORS MIMI BURBANK

SEBASTIAN RAHTZ

VOLUME 14, NUMBER 3 OCTOBER 1993

PROVIDENCE . RHODE ISLAND . U.S.A.

Editorial and Production notes

T h s volume includes the majority of papers presen-
ted at TUG'93; the exceptions are Richard Kinch's
True T@: A New Implementation for Windows,

Richard Southall's Document Design and Laurent
Siebenmann's The Spacing Around Math, which
were not offered for publication. One paper, Nel-
son Beebe's Bibliography Prettyprinting and Syntax
Checking, was too long for the Proceedings and will
be published in full in the next issue of TUGboat.

The following workshops and panel sessions
were held (organiser's name in brackets): .€%T@3

(Frank Mittelbach), Virtual Fonts (Michael Doob), Bib-

liographic Formatting Tools (David Rhead), Multi-

lingual T@ (Yannis Haralambous), Archives, Typo-

graphic Issues, and Math Font Encodings. Alan Jef-
frey's report on the latter is included in these Pro-
ceedings.

T h s volume breaks with TUGboat tradition by
making almost no use of Donald Knuth's Computer
Modern font family. All the papers are set in Lucida
Bright, with Lucida Sans, Lucida Typewriter and Lu-
cida New Math used where appropriate, at just below
9pt. The only exceptions are figures in the papers
by Daniel Taupin where the macro packages were
strongly wedded to CMR-like font names. We hope
that TUGboat readers will enjoy thls changed look,
or at least use it as a conversation piece. It is salut-
ary to relate that many of the papers were carefully
tuned by their authors to fit the page size and line
breaks if they were set in Computer Modern - Lu-
cida caused many headaches for the editors for t h s
reason! Readers may also notice that two different
sets of hyphenation patterns were used - all papers
by non-American authors were set using UK English
hyphenation.

All papers were received, edited and reviewed
via electronic mail. Four papers - Haralambous,
Taupin (twice) and Plaice - needed their own fonts
to be built using METFIFONT. Just one figure had
to be pasted in, for obvious reasons - the example
output in Kawaguti's paper. The nine plain TEX and
twenty ETEX files were processed on a Sun SPARC-
station (the same machine at Aston which hosts the
UK TEX Archve, courtesy of Peter Abbott), and Post-
Script output prepared with Tom Rokicla's dtips.

The LATEX files used the New Font Selection Scheme,
version 2, throughout, and the plain TEX files used a
specially-prepared format file with the Lucida fonts
specified. The 'Cork' (DC) encoding was used for all
text fonts. The output was printed using PK fonts,
generated by ps2pk from Postscript Type1 sources.

The camera-ready copy was printed on a Linotron
phototypesetter.

The reviewing and editing process started later
in the year than anticipated, but all the authors
were very prompt in getting their papers ready
for both the preprints and these final Proceed-
ings. The burden of editorial work was under-
taken primarily by Mimi Burbank (with greatly ap-
preciated help from Bill Burgess), whle Sebastian
Rahtz handled the implementation and produc-
tion. An excellent band of anonymous reviewers
provided an enormous amount of feedback without
which this volume would have been the poorer.

Sebastian Rahtz and Mimi Burbank

Obituary - Yuri Melnichuk

Yuri Melnichuk, a reader in computing mathematics
at Lviv Polytechnical Institute, in Ukraine, and one of
the participants at the Aston TUG'93 conference and
courses, died suddenly of a heart attack while at the
University of York on Friday, August 13th.

Yuri was a fairly frequent visitor to York, where
he was working on a joint book on number theory
with Maurice Dodson. During his time at York he had
been introduced to TEX, and with the help of other
colleagues in the Mathematics department there had
developed this interest. Realising its potential value
to the academic community in the Ukraine he had
contacted others, with a view to establishing good
links between institutions and individuals.

His concerns were not just mathematical: he

was also active in ensuring that the British Council
and the IEE were in contact with relevant bodies in
the Ukraine. Just before he died he was searchng the
net for a PC version of Ada to take back for computer
scientists in his institution.

Last year, he had been instrumental in begin-
ning a TEX users group in Lviv and was beginning to
coordinate its activities over the whole country.

He was a dynamic personality, with infectious
vision and enthusiastic plans. An excellent and hos-
pitable host, his good humour was matched with
determination. His ability to bring people together
was a tribute to his wsion of cooperation and his
own engaging nature. His loss is a blow to the
many friends he had made, to his colleagues in
the Ukraine, and to the TEX community worldwide.

Malcolm Clark

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Opening words

These proceedings will surprise you. They're not
done in Computer Modern! Go look! We don't often
have the opportunity to see so much "sample" ma-
terial done in Lucida! Anyone who's done this sort of
work on a large collection of papers can appreciate
the difficulties t h s can mean. Sebastian Rahtz and
Mimi Burbank, the co-editors, deserve a solid round
of applause for their work.

The conference where it all took place? Very
interesting, very nice, very surprising (aren't they all,
each in their own way?). For me, t h s was the first
time since Cork (1990) that I'd attended a meeting
in Europe. Past European meetings (Prague being
the latest one) have clearly created a large group of
colleagues and friends over the years. And it was
evident at Aston.

It was a great pleasure to meet so many people
who had been only names and e-mail addresses. And
the pleasure was not just mine -it seemed that once
again, the meeting was mainly about people meeting
people: seeing people from past meetings, renewing
friendshps, making new ones, exchanging informa-
tion and macros and ideas. It was a dynamic meeting
and the participants were the highlight.

But of course there were the presentations too!
Papers and panels and workshops, then the coffee
chats and lunch discussions and dinner meetings -
and then there were those late hours spent over at
that pub on campus, the Sacks of Potatoes. I always
leave a TUG meeting with a sore throat!

The papers here are all well worth your time to
sit down and read, a bit at a time. For a view of
paragraphs that you'll never forget, may I suggest
you turn to the paper by Boguslaw Jackowski and
Marek Rytko, "TEX from \ i nden t to \par."

Of particular interest to those concerned about
the future of TEX (and we all are, to varying degrees)
are two papers, one by Joachim Lammarsch, one
from Phil Taylor, which provide some background
on NTS (New Typesetting System), seen by many as
the next evolution or generation of typesetting for
us as TEX users. It's not a question of agreeing with
these positions, or that these are the only positions.
It is a question of having some information whch
can be discussed and considered by the wider TEX-
using community.

And there were special moments as well: the
trip to Stratford, to attend a performance of
Shakespeare's King Lear, was preceded by a special
visit to the Royal Shakespeare Library. The curator
was rather bemused by this group of some 30 people
who were ooh-ing and aah-ing over the characters

and design and colour rather than the content. The
play itself was simply staggering in its length (3 3/4
hours) and its impact, especially as I was sitting only
seven rows from the stage.

I met many of the editors of other newsletters
and publications (Karel Horhk, Wiodek Bzyl, Tomasz
Plata-Przechlewski). I met a fellow from Slovenia
(Borut inidar); in my ignorance, I asked how he could
do any computer work with the war around. His
reply: "We haven't had war for two years now." Real-
ity is a very hard wall indeed sometimes. Attendees
were from everywhere: from Norway to Israel, from
Japan to Ukraine.

And I met Yuri Melnichuk, from Lviv, Ukraine.
Malcolm Clark has written about his visit to that
city in TTN 2,3. At Aston, I encountered a man who
was dynamic and almost bursting with enthusiasm
not just for TEX, but for the people he'd met at the
meeting, the TEX community at large, and the devel-
oping group of TEX users back in Ukraine. He was
extremely keen on talking about how t h s potential
user group (a meeting at the end of September of
their computer society was to see the formal estab-
lishment of a Ukrainian user group) could interact
and connect with TUG; he had spent a great deal of
time thmlung of the issue, and had written his ideas
down. We were even corresponding via e-mail on
the 12th of August. And so it was a total shock to
read in my mail on the 15th of August: Yuri had
died of a heart attack on the 13th. Malcolm has writ-
ten a notice, whch you will find elsewhere in these
proceedings.

What will come of the efforts he had made to
start a user group? We don't know. Yannis Har-
alambous was going to visit Lviv (originally at Yuri's
request) to help set up TEX for Ukrainian users, but
this has now fallen through. I hope very much that
Yuri's enthusiasm will continue, and maybe we'll be
able to report good news on this front in TTN or
TUGboat.

I hope that you enjoy these proceedings, that
you will find some new ideas, new macros, new ap-
proaches which will intrigue you, and perhaps be-
come part of your own TEX practices. And who
knows: you may come to next year's meeting in

Santa Barbara with some ideas of your own! Enjoy
the papers. And think about putting a circle on your
calendars for TUG'94! It'll be our 15th anniversary
meeting - a significant milestone.

o Christina Thiele
President, TEX Users Group

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A World-Wide Window on TEX

The 14th Annual TEX Users Group Meeting, Aston University, UK

Abstract

TUG'93 was organised by:

Chairman:
Administration:

Programme:

Editors:

Courses organiser:
Publicity and bursaries:

Social programme:

TUGly Telegraph:

Peter Abbott
Maureen Campbell

Chris Rowley and Malcolm Clark

Sebastian Rahtz and Mirni Burbank
Carol Hewlett

Phlip Taylor

David Murphy
Steffen Kernstock

Acknowledgements and thanks

The Committee would like to publicly acknowledge

the many contributions made both to the Bursaries
fund (whlch enabled the Committee to offer assisted

places to well over a dozen overseas delegates), and
to the Social fund (which enabled them to provide

hospitality and refreshments to all delegates).

The following individual members and organisations

contributed to one or both funds and the Committee

would like to express their enormous gratitude.

E. A. Coxon

Dave Eckersley
Yukitosh Fukimura

Hitosh Iwamoto

Timo Knuutila

Jost Krieger

Heinz Kroger
Frank Mittelbach

Anna Morawska
Norman Naugle

Richard Quint

Marc Van Leeuwen

Alan Wetmore

ArborText
DANTE
Kaveh Bazargan

(Focal Image)

GUTenberg

Nordic TeX

NTG

TCI Software

TEXSS
TUG
UK-TUG

Ewart North (UniTeX)

Y&Y Inc.

Conference Programme

Monday July 26th

Tutorials
Introduction to LATEX (what it is and what it is not):

Sebastian Rahtz and Michel Goossens

Flavours of TEX: a brief tour: Chris Rowley

Getting TEX: how to set up and maintain a TEX system

for yourself and your friends: Allan Reese

Keynotes
TEX from \indent to \par: Bogusjaw Jackowski &

Marek RyCko

The future of TEX and TUG: Christina Thiele

A new typesetting system: is it really necessary?:

Joachim Lammarsch

LATEXZ+; announcement: Frank Mittelbach, Rainer
Schopf and Chris Rowley

Workshops
 LATEX^ (Rainer Schopf, Frank Mittelbach & Chris Row-

ley)

Virtual fonts (Michael Doob)

Tuesday July 2 7th

Multilingual
Typesetting Catalan texts with TEX: Gabriel Valiente
Feruglio &Robert Fuster

Russian TEX issues: loolung about and outlook: Irina

A Makhovaya

Language-dependent ligatures: John Plaice

A format compilation framework for European lan-

guages: Larry Siebenmann

Multilingual TEX: Working group report Yannis Har-

alambous

Panel: Multilingual issues

Bibliographic tools
Bibliography prettyprinting and syntax checlung:

Nelson Beebe

LexiTEX: context-sensitive citations for LATEX: Frank

Bennett

160 T a b o a t , Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A World-Wide Window on TEX

Horizons
An abstract model for tables: Xinxin Wang & Derick

Wood

Using TEX and METAFONT to build complicated

maps: Daniel Taupin

Mixing TEX and SGML: a recipe for disaster?: Peter
Flynn

Workshops
BETEX (David Rhead)

Multilingual (Yannis Haralambous)

Wednesday July 28th

Futures
A beginner's Guide to DSSL: Martin Bryan

NTS: a future to TEX?: Philip Taylor

True T@: a new implementation for Windows and
beyond: Richard Kinch

Building a TEX-based multi-window environment ad-

apted to research work: Michel Lavaud

A future for TEX: Roger Hunter

Thursday July 29th

Fonts
Virtual fonts in a production environment: Michael

Doob & Craig Platt

The Khmer Script tamed by the Lion (of TEX): Yannis

Haralambous

Scalable outline fonts: Berthold Horn

A PostScript font installer written in TEX: Alan Jef-

frey

A versatile TEX device driver: Minato Kawaguti

Maths
An application of literate programming: creating a
format for the Bulletin of Polish TUG: Wiodek Bzyl

and Tomek Przechlewski

The spacing around mathematics: a quick trip to the
limits of TEX: Larry Siebenmann

The 'A' in I~TEX: Barbara Beeton & Christina Thiele

Archives
The comprehensive TEX archive network - CTAN:
George Greenwade

Panel: Archves and information

Workshops
MakeIndex (Joachim Schrod)

Maths fonts encodings (Barbara Beeton &Frank Mit-
telbach)

Friday July 30th

Macros
Syntactic sugar: Kees van der Laan

Galleys, space, and automata: Jonathan Fine

Sorting in BLUe: Kees van der Laan

News from MusicT~X: Daniel Taupin

TEX in the Ukraine: report: Yuri Melnichuk

Didot
Teaching typography - the Didot project: Mary

Dyson

Document design: Richard Southall

Panel: Typographic issues

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Future of TEX and TUG

Christina A. L. Thiele
5 Homestead Street

Nepean, Ontario
K2E 7N9 Canada

c t h i e leeccs . car1 eton . ca

Abstract

Challenges which face TUG are also those whch face all user groups: the question
of where TEX will lead us in the next several years as other programs are developed,
many with TEX or TEX-l~ke elements behnd more user-friendly front ends. What
TEX has allowed us to do for many years is now slowly becoming possible in other
software. Where will pure TEX be in the future? Will we still be able to use it? In
short -What will happen to us?

We must encourage those who are passionately concerned with these future
directions. We must support improvements and changes which do not hnder or
go against the main guiding principles behind TEX: that it be portable, that it be
backwards compatible, and that it produce beautiful documents.

That is our challenge as a user group. To provide the means by which all of
us, as users, can learn to adapt to, and benefit from, the changes and refinements
which those who do development work are labouring over so intensely. And to
provide the means by which we can improve our own slulls, our own knowledge
in the use of TEX, in order to be proud producers of those beautiful documents.

Introduction

Earlier t h s year, in June, the NTG, the Dutch user
group, held their 5th anniversary meeting. Although
I was unable to attend, I did write up a short text
whch their chairman, Kees van der Laan, read to the
audience. That text serves as a starting point for t h s
paper.

The Dutch group were celebrating their lustrum,
and Kees' own address to the meeting was an ac-
count of their history to date: their activities, their
successes, and their experiences.

I also wrote a bit about hstory, TUG'S hstory.
We are now in our 14th year. This meeting re-
flects what we are now: a group of people, with
broad interests and lverse applications, where TEX
is now truly an international tool for typesetting doc-
uments, and exchanging information. People every-
where are using TEX not merely to typeset, but in
fact to make sure that their ideas are being clearly
understood by colleagues around the globe. It has,
in some sense, become a language itself: "People
tallung TEX".

It sounds odd. But for some, it is in fact the lit-
eral truth. For those who attended last year's meet-
ing at Portland (or who read the paper in the pro-
ceedings), we were treated to a wonderful display of

a TEX application by Raman, a blind graduate stu-
dent at Cornell. He has a voice synthesizer set up
to interpret LATEX code, both document structure and
mathematics, into sound. This was never part of the
original plan! People are talung TEX "where no-one
has gone before", if I may steal a well-known phrase
from television.

Who could have foreseen such applications
when TEX first turned up on a computer near you? It
was supposed to allow us to typeset beautiful doc-
uments. It was supposed to finally make sense of
maths typesetting. It was supposed to work withn
an English-language context, with some facilities for
non-English material. Graphlcs weren't part of the
equation, although the hooks were there.

And what do we see today? We have achieved
beautiful typesetting - and also some absolutely aw-
ful typesetting! TEX is still far and away the best
means of representing mathematics - and TEX is
also appearing behnd the scenes in material whch
has absolutely nothing to do with mathematical or
technical typesetting. As for English - well, that was
totally blown wide open at the 1989 Stanford meet-
ing and TEX v.3. Indeed, at this conference audience,
we had people representing probably 30 languages
and from probably as many different countries. And
we are all still "tallung TEX". This is our lingua

TUGboat, Volume 14 (1 993), No. 3 -Proceedings of the 1993 Annual Meeting

The Future of TEX and TUG

franca. Our means of making this world smaller,
of making each person in it closer to us.

Who could have foreseen that 15 years ago? I
expect that we are similarly unable to draw a picture
of where TEX will lead us 10 years from now.

Challenges whch face TUG are also those which
face all user groups: the question of where TEX will
lead us in the next several years as other programs
are developed, many with TEX or TEX-llke elements
behnd more user-friendly front ends. What TEX has
allowed us to do for many years is now slowly be-
coming possible in other software. Where will pure
TEX be in the future? Will we still be able to use it?
In short - What will happen to us?

What is this "Future TEX"?

There has been a considerable amount of time and
effort devoted to this issue- the future of TEX-in
the past few years. Each TUG meeting has a section
on "The Future". There are great discussions and
arguments which thrive on various network lists:
from comp. text. tex, which is a general TEX list,
to ones devoted specifically to the future, such as
the nts-l@vm.urz.uni-heidelberg .de, set up by
DANTE, the German-spealung user gr0up.l

T h s year is no different: at t h s conference we
heard about the future in a paper from Joachm Lam-
marsch, entitled "A New Typesetting System: Is it
Really Necessary?". A number of other papers were
presented in the "Futures" section. These papers in
t h s proceedings will be read . . . or glanced at . . . or
passed over by our membership.

And that raises the question: do we all need to
be aware of the discussions on the future? Should
we all be expert in the various threads of argumenta-
tion whch exist? Must we all be informed TEX users,
in short? Perhaps . . . perhaps not.

I would argue that the TEX-using community
is now so large that there are sufficient numbers
of people who are passionately interested and con-
cerned about the future of TEX, the program. Suffi-
cient numbers of people with a broad range of opin-
ions, some of whlch are completely different from
those of others, who are capable of discussing these
issues, and acheving a judicious balance and com-
promise on just what the future of TEX-and the
future TEX - ought to look like.

Does that mean I'm saying let someone else
worry about the issues? No. Not at all. In fact, I
would say that we should all be malung the attempt

Phil Taylor, "The Future of TEX," TUGboat 13,4,
pp. 433-442, December 1992. See also Phil's paper
elsewhere i n these Proceedings.

at understanding the broad outlines of what is being
discussed. It's not always easy to read those articles
in TUGboar -I agree! But as much as possible, we
should be reading at least the abstracts, the intro-
ductory paragraphs, just so that we are aware of the
general ideas. We aren't in school anymore: there
are no tests at the end of the year about how much
we have understood! We are mainly just users of TEX.
But we ought to be malung the effort to understand
what what some of the problems are, and what some
of the solutions may be.

And t h s brings me to the following: we must
encourage those who are passionately concerned
with these future directions. We must support im-
provements and changes which do not hnder or go
against the main guiding principles behind TEX: that
it be portable, that it be backwards c~mpat ib le ,~ and
that it produce beautiful documents.

But that support should not be blind. We must
be aware of what is being proposed, and here I turn
to the developers and say to you: you must sim-
ilarly be supporting the users of TEX by providing
information, updates, mini-courses and workshops,
on just what is happening, and what you expect to
see happening. An absence of understandable com-
munications can only be detrimental: people will
avoid what they cannot understand. As TEX users,
most of us already avoid learning what thmgs like
\futurelet mean! We are masters at not dealing
with parts of TEX whch exceed our competence and
understanding. Unless there is sufficient informa-
tion flowing back to users, they d l similarly avoid
using new versions of TEX, or even offshoots of TEX-
but-named-somethmg-else.

The range of TEX'S influence is extremely broad:
some of us use TEX only in a small way in order to do
our jobs; some of us, however, earn our livings using
TEX. It has therefore become a key element in how
many people do their work. And when something
has become so critical to so many people, great care
must be taken to preserve the overall integrity of the
program.

We have spent years acquiring our T~Xpertise.
We will not give that up easily. We will not willingly
throw away 5 or 10 years' worth of experience for
somethng totally different. We don't do it now by
switchng to somethng like PageMaker or Word; why
should we leave TEX for somethng that's different
but TEX-like?

The challenge, as I see it, for developers, both
commercial and otherwise, is to produce software

* I'd like to thank Phil, whose paper here re-
minded me of t h s critical point.

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Christina A. L. Thele

that allows both the experienced TEX user to con-

tinue applying that experience, and the new user to
more quickly, more easily, produce those beautiful

documents. That one can address both the overt

user of TEX code, and the person who would prefer

to not know what's under the hood.
Can TEX be thls tool-for-all-users in the future?

I think it can. TEX has proven that, with its own flex-

iblity, and the ingenuity of its users, it can be turned

to almost any task. TEX is an incredible achevement,

stemming from the work of one man and a group of
dedicated and devoted graduate students. It is an
extraordinary piece of luck which brought it all into

being. Most of us are aware of t h s past, and feel

that the magic must somehow be preserved.
Simply put, TEX is not like any other software

program. Granted, it has its gaps, its less-than-ideal

elements, but overall, it has a unique place in soft-
ware history. Our goal must be to maintain that
place, and not allow TEX to become a non-portable,

non-compatible, fragmented program. Otherwise,

it's not TEX!

The Future of User Groups . . .

And where do we, as a user group, fit into t h s fu-

ture? Because TEX doesn't exist or function in a vac-

uum. It lives because we are using it. We may have

only a passing acquaintance with much of its inner
workings, or only wish to have a passing acquain-

tance with all the discussions about the future of
TEX and a future TEX and all that. But we are also a

major part of the future of TEX. There is no question

about that.

And for users like us -we must continue to im-
prove our own skills, our own knowledge in the use

of TEX, in order to be proud producers of the beauti-
ful documents, whlch are the reason we use TEX.

Because it is not TEX alone which will do this.

No program will produce beautiful documents all by
itself. It is the users of those programs who pro-

duce beautiful documents. TEX is merely a tool - an

extraordinary tool, certainly - but we are the crafts-
men who must learn to use it to its full potential.

Our user groups can help in teaching us how
to refine our use, show us ways of improving our

knowledge and skills. Our user groups are there to

bind TEX users together, to bring us into contact with
these better methods and improved skills.

And it is our users who are ultimately the source
of that information: the user group is merely the

means by which that information can be distributed

widely and thoroughly.

That is our challenge as user groups: to be the
highway for this information interchange. To pro-

vide the means by which those with wide-ranging

knowledge and skills can pass their expertise along

to others. And to provide the means by which all of

us, as users, can learn to adapt to, and benefit from,
the changes and refinements which those who do

development work are labouring over so intensely.

. . . and of TUG, Specifically

TEX itself is just a bit older than TUG, by a few years.

So let's say it's been out there for about 15 years or

so. Whle a very small portion of users are members
of a user group, ours or others, the actual number

of users is probably in the hundreds of thousands.

Universities are probably still the spawning ground
for most of those users, who move with TEX through

their research papers and their theses, eventually

becoming employed in companies where they either

find TEX already in place, or they introduce it, spread-
ing its use even further. There are the academics

and scientists themselves who travel from place to

place, bringing their research files with them, and

invariably TEX is part of that baggage.
And yet-TUG only counts some 2,500 mem-

bers. If one puts all the other user groups together,

they would also probably only account for another

3,000 to 3,500 members. It would seem, then, that
our future as a user group should be of more irnrne-
diate concern to us. How can we attract new mem-
bers? What about former members? What is our

function?

In 1991, I was a member of the committee to de-

vise a mission statement, a short text which would

provide some key points of focus for TUG. At the an-
nual meeting that year, held just outside Boston, the

Board refined that text. The final mission statement,

comprising three main elements, now appears on the
inside front cover of all issues of our newsletter, T@

and TUG NEWS:

The TEX Users Group (TUG) provides leader-

ship:

1. to encourage and expand the use o f T@,

METAFONT, and related systems

2. to ensure the integrity and portability of
TEX, M ETA FONT, and related systems

3. to foster innovation in high-quality elec-
tronic document preparation

The first point, about encouraging and expand-

ing the use of TEX, METAFONT, and related systems,
is directly related to the every-day activities of our

user group.

164 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Future of TEX and TUG

The second point, about TEX'S integrity and

portability, concerns discussions regarding the fu-

ture of TEX and the shape of a future TjX.

The thrd point, about fostering innovation, is

one which our publications, TUGboat and now TEX

and TUG NEWS (TTN), are in part addressing.

The job which I see before us, in TUG, is to find

ways to implement these points. But what ways?

For many, TUG is an organisation whch pub-
lishes TUGboat, and has an annual meeting. Last

year, a quarterly newsletter, TTN, was added. Still,
for the vast majority of TUG members, these seem

to be the main features of the user group, with the
publications being the main benefit of membership.

For a smaller group of people, those who have called

the TUG Office, formerly in Providence, now in Santa

Barbara, TUG also has meant a phone number and a

person who might be able to answer their questions,
or pass them on to someone else for an answer. It

has been a place where one could buy TEX-ware and

TEX publications.

But TUG has become more than that. With the
advent of the Technical Council (TC), and its various

Techmcal Workmg Groups (TWGs), TUG is now also
showing some of that leadership which our mission

statement would have us demon~tra te .~

Some of the WGs have become extremely ac-

tive and productive. Two of them were active at
t h s conference: Yannis Haralambous, chair of the

Multiple Language Coordination TCVG, led a meet-

ing and George Greenwade, chair of the TEX Archwe

Guidelines TWG, introduced the Comprehensive TEX
Archive Network for the first time.

Other TwGs include one on TEX Extended Math-

ematic Font Encoding, chaired by Barbara Beeton;

Raman, mentioned earlier in this paper, is chair of
a TWG on TEX for the Disabled; and there is also a

System Implementor Coordination TWG, chaired by

Michael Ferguson. The TC, with Ferguson as chair,

has also put out a call, published in the latest issue

of TTN, for "Special Interest Groups."
The work being done by all these working

groups - all of it volunteer, it must be emphasised -
is in progress. Some groups are already at the
point where they can say their first tasks have been
completed; some are right in the middle of mak-

ing their recommendations and decisions; others

are still gathering information. But the point is:
the Technical Working Groups are providing all TEX

users with solid effort and results, which will en-

hance our use of TjX, our access to TEX, and whch

A basic outline of the Technical Council and its
working groups can be found in TTN 1,3:5-8.

will bring some standardisation and guidelines to

the TjX-using community.

Another area of group activity within TUG is our
committees. While it could be said that these have
been less dynamic or productive in the past, our cur-

rent committees are now very effective. We will con-

tinue this committee approach to addressing issues
which face us, as a user group. I would very much

like to see TUG become more decisive, more active,

with effective and pragmatic mechanisms in place,

so that we can become the TUG that is described in

our mission statement: demonstrating leadershp in
those three areas of focus.

By leadershp, I certainly don't mean domi-
nance. Leadership, when we drafted the mission

statement, was intended to reassert the place of

TUG, the TEX Users Group, as the oldest user group,
the one whch began with the core of people in-
volved with that first developer, Don Knuth. We

are the international user group, and therefore it

is expected that we should demonstrate leadership,
that we should support and disseminate informa-

tion about TEX and TEX-related developments, that

where there is a question, somewhere within TUG'S

collective knowledge lies the person, or the people,

with the answer.

We have not always lived up to that expectation;

I think we should make every effort to do so.
We are currently reviewing our internal struc-

ture, with respect to representatives from other user
groups. Since 1989, we have had representatives

from five user groups; we are working to come
up with formal mechanisms to include other user

groups, to clarify the role of such representatives, to

ensure that there is open two-way communications
between TUG and other groups.

T h s is an important issue, even if mainly ad-

ministrative: TEX is now a completely internation-

alised program. TUG'S membership directory reads

like a world atlas. The people who have come to this
meeting are also proof of the international fact: we

have people from Russia, from Spain, from Japan,
as well as North America. If we, as the interna-

tional user group, are to function in harmony, then
we must have comments and opinions from every-

one. And this means providing a forum for such
comment and opinion to be heard.

One big feature of our user groups is the ex-

tent to which people are volunteering their time,
and their work, to TEX. There are people who vol-

unteer their programs, their macros, their expertise,
their information. There are people who volunteer

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Christina A. L. Thiele

their time to organise meetings, to write newslet-
ters, to write articles. There are people who vol-
unteer to work in groups, TWGs or committees or
other names, to try and solve a problem, provide
recommendations, establish standards. The volun-
teer effort which people make to TEX, and usually
without a second thought, is extraordinary. We
should remember to be thankful for such generos-
ity.

Another feature of our user groups is electronic
mail. I t hnk it's safe to say now that the majority
of TEX users are also network e-mail users. We com-
municate as easily with Japan as with our colleagues
across the hall (occasionally even better!). We are
able to work as a team, discuss our options, disagree
and then come to an agreement, and maybe, at some
future annual meeting, we may actually meet one an-
other. The cooperation whch makes t h s volunteer
effort worthwhile is simply astounding. Added to
t h s is the fact that we are probably, at one time or
another, working with colleagues for whom English
is not the first language. And yet it still seems to
work.

Of course, it's not all roses out there. There
have been some terrific battles (also known as "flame
wars") waged via e-mail; it is a medium which can
foster tremendous misunderstandings, can be per-
ceived as very hurtful and rude, can allow one to
make too hasty a reply, when some time spent cool-
ing off might be more useful, and more effective.

The point I'm malung here is that, for all the
difficulties which it sometimes appears we are suf-
fering, as TEX users, this is a large volunteer-based
community. And whle we may want to see things
move faster, see services improved, get more for our
money, and so on, it will really only happen with the
cooperation and participation of volunteers, who are
people just like you!

So what is the future plan for TUG? I think
it involves increasing our membership; increasing
and improving our services to members and non-
members; serving as that channel, that highway for
information exchange. I think our future lies in pro-
viding documentation and software on TEX, META-

FONT, and related systems.
But more than any of these activities, the future

of TUG lies with its members. When members don't
renew, we have to ask why. When TEX users choose
not to join TUG, or any other user group, we must ask
why. When members don't participate in meetings,
in elections, in writing for our publications, we must
ask why!

There are elections coming up t h s fall, for all
1 5 positions on the Board. These wdl be our second
elections. T h s is one of the most direct ways you
have to participate in your user group. Time now
for you, as TUG members, to look at those you've
elected, to look at what's been accomplished. Elec-
tion materials d l be mailed to all members in the
fall. Read carefully, and mail in your ballots.

There are others ways, too, in whch you can
participate. If you have a particular expertise, an
area where you feel you have a certain competence,
why not consider letting the TUG Office know that
you'd be willing to respond to queries in that area.
Even if you volunteer for a 3- or 6-month period, that
participation will benefit many other users. I have
fielded a number of queries over the years regard-
ing phonetics and linguistics material; I volunteer to
continue that effort. If someone wants to join me,
that would be wonderful!

Another idea to try out: in German, there's a
word - "Stammtisch". It means, more or less, "a
regular table set aside for a group". You may have
noticed t h s word appearing in TUGboat's calendar
of events. What's happening is a group of people
get together on a regular basis, usually in a pub or
restaurant, and talk - mainly - about TEX. It's a way
of letting TEX users know there's a place where they
can find some friends, some fellow users, and talk
shop. Or maybe discuss somethng completely dif-
ferent, like politics, or the weather! But it's an in-
teresting idea whch could certainly work anywhere
there are TEX users. Why not give it a try? You might
be surprised at the results.

And of course, you can participate by talbng
about TEX whenever the opportunity arises. Re-
cently, I attended a conference for scholarly pub-
lishers. Some had heard of TEX; some were actually
long-time users. But they had never seen any actual
TUG representatives at their meetings - they got two
at t h s one! Peter Flynn, our Secretary, was also able
to come to one of the afternoon sessions.

Find out what conferences are going on locally!
Many of us belong to other societies; why not send
information on their conferences to the TUG Office, if
it seems there is a connection with publishmg, with
typesetting, or with electronic communications. Let
us know what's happening in your part of the world.
Maybe there's a way we can introduce a TEX presence,
either directly via TUG, or via a local user group.

And finally: TUG a member! Bring in an addi-
tional member to TUG, and we can discuss a mug or
t-shirt for you!

TCiGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A New Typesetting System: Is It Really Necessary?

Joachim Larnmarsch
Computing Center
Universitat Heidelberg
Im Neuenheiner Feld 293

D6900 Heidelberg 1

Germany
Internet: X92@vm. hd-net . uni -he i de l berg. de

Abstract

It was difficult for me to decide how to prepare this talk and in whch function I
should give it - as an individual, as a member of the University of Heidelberg, as a
Special Director of the TUG Board of Directors (there was already a talk scheduled
to be given by Christina Thiele as President of TUG), or as the president of DANTE
e.V. I decided to give my talk as the president of DANTE.

NTS - is it really necessary? The answer is ob-
vious -YES!

There are two reasons why NTS is necessary; on
the one hand there are t e c h c a l reasons and on the
other, political reasons. Concerning the t e c b c a l
aspects, there were many thngs to be taken into
account: Frank Mittelbach and David Salomon pro-
posed a lot of design changes to Donald Knuth, and
there were an increasing number of demands for the
TEX Users Group to become active. I do not wish to
discuss t e c h c a l issues because Phil Taylor will give
a talk on t h s subject and he is far better qualified to
do the job. My talk is concerned with political reas-
ons for NTS. I will try to show why the NTS project is
necessary and what has been done over the last two
years, especially during the last few months.

We need the NTS-project and it is easier to un-
derstand t k s need if we have a closer look at the TEX
world. First, we have the TEX Users Group, which was
founded more than fourteen years ago; it claims to
be the international TEX organization and currently
has about 2 ,500 members. Besides TUG, we have the
following organizations in Europe (in alphabetical
order): DANTE e.V., GUTenberg, the Nordic Group,
NTG, UKTEXUG, and now several groups in Eastern
Europe. I thmk these groups together have more
members than the TEX Users Group. Most of these
members are not members of TUG, but they use TEX
too. It is not known how many people currently
use TEX worldwide, and it is impossible to estim-
ate how many people would use TEX if it was more
user friendly. We can say that the TEX Users Group
provides very good support in North America, but
I think this support has not been really satisfactory
for Europeans. Also, the membership fee for the

TEX Users Group is especially h g h for members of
Eastern Europe.

Unfortunately, we also have problems in
Europe; for instance, the problem of different lan-
guages. There was some support from Donald Knuth
to make TEX more flexible, but the solution was very
difficult. At the 1990 meeting in Cork, we decided
that we needed a standard for the now-called DC-
fonts (I even named it "Cork Standard"). The "Cork
Standard" is now under discussion. It is not actu-
ally a standard anymore and it is obvious that it is
controversial.

We tried to establish a European TEX Organiza-
tion (ETO), but we ran into the same problems as big
politics. And a small problem became a big problem:
a common language. We have different languages in
Europe and it was not easy to agree on a common
language. I am glad t h s type of problem does not
occur with local members. But we have one thing in
common worldwide, we have a joining element: TEX.
And I think the important point is that we never for-
get this.

We have tried to make TEX attractive for the
TEX community and the TEX members, and all have
worked together: journals like " TUGboat" and " TEX
and TUG NEWS, or journals for local users in dif-
ferent languages such as "Die TEXnische Komodie"
or "Cahiers GUTenberg", the journal of NTG and a
lot of other journals. Sometimes these are difficult
to read, for me, because they are in Czech or Polish
or . . ., but that's Europe! We have worldwide discus-
sion lists like INFO-TEX or in Europe TEX-EURO, and
we have local lists for local groups: TEX-D-L, CUT,

TEX-NL, . . ., we have lists for special items, and we
have digests like TEXhax and UKTEX. We have user

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Joachirn Lamrnarsch

groups and we have many possibilities for cornmu-

nication; but, do we really use these opportunities?

h7e have a very good software distribution. The

distribution is done by the TEX Users Group, by local

groups and by the new Comprehensive TEX Archve

Network (CTAN). CTAN is a TUG-sponsored pro-

ject, under the T e c h c a l Council, and represents
the work of George Greenwade, Sebastian Rahtz and

others and the management of the three largest soft-

ware servers in the world - the TEX network. I thmk

it is the biggest service for any kind of software

worldwide.
But we have a big problem: TEX is getting out

of date. TEX is now more than 15 years old. I say

that ten years ago, it was the best typesetting sys-
tem worldwide. Today it is the grandfather of the

typesetting systems; other typesetting systems have

learned from TEX. Other typesetting systems often

incorporate many features of TEX, like the hyphen-
ation algorithm, the page-breaking algorithm, kern-

ing, ligatures, and many other things. We find func-
tions for typesetting mathematical formulas in these

other systems. TEX is free and commercial vendors

have had the chance to use TEX algorithms. There are

other systems in use today: Word, WinWord, Word-
Perfect, Framemaker and others. I do not believe

they are as good as TEX, but almost. They provide

a better user interface - whch is really important -
and they do one thng which we will never be able

to do: they do advertising! We have never had the

money to advertise.

What will happen? The result is that more and
more users are deciding to leave the TEX world and

start using other systems. There are a lot of people

who do not consider the advantages of using TEX. So,
we lose users and that means we lose members. This

trend has been painfully obvious to user groups -

especially the TEX Users Group, whch is the oldest.

You can see the decreasing number of TUG members
and I believe that local groups will begin to suffer

the same decrease. Decreasing membership means

a decreasing income, whch leads to financial prob-

lems. If we have financial problems, the services we

offer decrease; the members get angry and do not re-
new their membership. What is the result? Again, a

decreasing number of members, decreasing income

and even worse service due to financial problems.
A vicious cycle! And in the end we have no user
groups.

What can we do? The answer is very simple:
improve TEX! Make TEX more user friendly! Make TEX

more attractive! This is not possible because TEX is
frozen by Donald Knuth. We have to live with TEX in

its present state, and this is not the state we want.

The consequences are obvious. We need a new

typesetting system. T h s is easy to say, but there is

no Donald Knuth to do the work and so therefore
we need all the people who are able to do such a

work. Together we have a chance to create such a

new typesetting system. It is also very important
that the development be done worldwide, because

only a worldwide system is acceptable as the suc-

cessor of TEX. T@ is the same worldwide. When
I write a text in Germany and send it to the US, I

can be sure that if the text is printed, it will pro-

duce the same output. I know for a fact that a lot

of mathematicians use TEX only for communication
to send mathematical formulas back and forth from

Germany to the US because it is the only way to send

formulas via electronic mail. TEX is the translator.
The next issue is what to call the new system;

its name cannot be TEX because TEX was named by

Donald Knuth and he has announced that he is not
wlling to give t h s name away. The AMS is holder
of the TEX trademark. They feel obliged to respect

Knuth's decision that any program which does not

meet his requirements can be called simply "TEX".
The work has to be done without Donald Knuth be-

cause for hun the story of TEX is over.

How to start? What have we done? Now a little
bit of history. After the Cork meeting it was ob-
vious that nothmg would be done by the TEX Users

Group because the TUG board was under reconstruc-

tion. I was glad that I - as the president of DANTE
e.V. - had the chance to initiate the development of

such a new typesetting system. I spent quite some

time considering how to proceed, and decided to an-
nounce the idea worldwide using the different com-

munication lists. It was never planned as a project

of DANTE e.V., nor as a project which would be un-
der the control of any other group. I feel no specific

group has the ability to direct such a project. If we

finally decide that we need a "board" to direct the

project, it must be one which represents all existing

groups - all existing TEX users worldwide.
The announcement was a huge success. I re-

ceived lots of mail from all over the world containing

many good ideas and announcements that people

would like to help. Unfortunately, there was no of-

ficial statement from any existing user group, sug-
gesting that it did not seem important enough to a

user's group. At the 1992 general meeting in Ham-

burg, the members of DANTE e.V. voted to support

the project. This is important because t h s project

needs money. And I needed the members of DANTE
e.V. to agree to provide some money.

168 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A New Typesetting System: Is It Really Necessary?

We established a moderated discussion group
and called it NTS-L. The aim of this list was to dis-

cuss all aspects of the new project. List subscribers
have seen a lot of good ideas, a lot of nonsense, and

a lot of things that have no chance of becoming part

of the new typesetting system - in other words, a lot

of interesting thngs! b7e reviewed these ideas in a

group headed by Dr. Rainer Schopf, a process which
took nearly nine months.

But we had problems too. Dr. Schopf was en-

gaged in another project and did not have enough

time to fulfill h s job as a technical leader. Searchmg

for a solution, we found Phil Taylor and I was very
glad that such an expert in TEX was willing to act as

the new t e c h c a l director. Please refer to his paper

in these Proceedings.

What will happen in the future? I do not know.

There are some questions, some of whch I believe
are really important.

One of the questions was what company would

be interested in the new typesetting system? Before

the 1992 meeting in Portland, I had spent some time
in the US and had visited some companies. I spoke

to Lance Carnes, president of Personal T@, and with

Doug Garnett from Blue Sky Research, and it became

clear that they did not like the idea. They have de-

veloped their software, and a new typesetting sys-

tem would force them to develop new software. On
the other hand, it was clear to all of them (and I

think David Kellerman, the president of Northlake

Software, said it very precisely) that we have two
possibilities: we can either support TEX or we can
leave the TEX world. And that is true. It was felt that

we would get support from companies, but not at

this time, because a system 'under consideration' is

not a thing a company will support, but later.
The next question was what publisher would

support it? Before I started the project, it was clear

to me that we also would need support from pub-

lishers. I had talks with Addison-Wesley (Germany),

Springer Verlag (Germany) and International Thom-

son Publishing (Germany), and they all promised
support because they saw that it would be necessary

for somethmg to be done in this direction.

There was another question that I knew would

come up. What would Donald Knuth say about this
project? I visited Donald Knuth in San Francisco

before the meeting in Portland in 1992, and spent

some hours talking with him about the project.' I ex-

plained why we need t h s project and that we did not
have the intention of destroying TEX He understood

' The meeting was arranged by Peter S. Gordon

that the project was necessary and he provided a lot
of hints on how to set up such a project. On the

other hand, he said that, for him, TEX is enough. For

his use, TEX does all he needs. He had written a type-
setting system for his books and the typesetting is

done by TEX in a wonderful way. He said very clearly

that the typesetting project was finished for h m .

What was new for me was that he did not write

TEX alone, but there had been a group of students

supporting h m . He wrote most of the code of the
program himself, but he always had people to dis-

cuss difficulties. He thought it was a good idea that

we were a group and said it was possible to have a

group for such a project. He gave his best wishes.
He did not say he was not interested, but he would

not work for it.
Some technical questions now arise. Will it be

free? It bill be freeware for non-commercial use,
just like TEX. Commercial use has to be discussed -

there is no consideration in t h s direction at this

time. Who will pay for it? (Very important question!)
DANTE e.V. will fund the start of the project. Per-

haps other groups will decide to support the project
financially. In Europe we may have an opportun-

ity to get support from the European Community;

we can try to develop t h s project as an EC project.

Perhaps we can get support from companies: pub-

lishng companies, software companies. I think we
have enough money for the first steps.

The last questions are: who needs the system?

Who will use it? I thnk we will use the system, be-

cause for everyone who says that TEX is not enough,
it is the only chance we have. We need t h s system

for the remaining years of the 20th century and pos-
sibly for the beginning of the next. Or, you could

say, we all need the system if we are interested in
keeping our community alive.

Now we come to the end and this is the begin-

ning: NTS - is it really necessary? I will say it again:

YES!

Acknowledgements. First of all I would like to

thank the unknown person who made the announce-

ment that I would give a talk here. It was a big sur-

prise to me to read that the president of DANTE e.V.

would be one of the speakers. I asked myself, "Do

we have a second president?" Well, after some con-

sideration I decided that it would be a good idea to
give the talk. I needed help in preparing the talk be-

cause I did not have enough time to do it on my own.

I would like to thank Luzia Dietsche, for preparing

the transparencies and Volker Schaa for proofread-

ing them. I had some problems in receiving a re-

from Addison-Wesley Publishing Company. imbursement for the costs of the meeting because I

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Joachim Lammarsch

was invited for the talk, and it is uncommon in Ger-
many that your employer pays in such cases. So I

thank Dr. Peter Sandner, the director of my Comput-

ing Center, for funding my journey. My last thanks

go to Malcolm Clark and Chris Rowley, who gave me

some h n t s on how to give a talk and I think that I

made use of these hints. The most important item

was to speak slowly, so that all non-native English
speakers would be able to understand me. Because

I am not a native speaker either, it was no problem

for me to speak slowly!

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

TEX from \indent to \par

Marek Rytko
Wydawnictwo Do

ul. Filtrowa 1
00-61 1 Warszawa. Poland

Boguslaw Jackowslu
ul. Tatrzanska 6/1

80-331 Gdansk, Poland

Abstract

A proper answer to even apparently simple questions about TEX can only be

answered with a detailed formal specification of TEX'S mechanisms, which will
allow us to derive the behaviour of TEX in more complex situations.

Introduction What is appended to the main vertical list and

There are some seemingly simple questions about

TEX whch may be difficult to answer without precise
knowledge of TEX mechanisms.

In the following section we will ask three such

questions, encouraging the reader to answer them

without reading the explanation.
Actually, the explanation follows immediately

from a detailed specification of TEX'S action at the

beginning and at the end of a paragraph. We believe

that if such a specification of all TEX'S mechan-

isms existed, answers to most questions concerning

behaviour of TEX would be equally simple.
The pivotal sections are 'Switching from Ver-

tical to Horizontal Mode' and 'Switchmg from Hori-
zontal to Vertical Mode'. The section 'From Input
Characters to Commands' contains necessary intro-

ductory material.

Questions

In all questions we assume the normal meaning of

tokens of plain TEX.

Q1. What is the difference between:

(*) \everypar { \de f \ i nden t { l } }

\ i nden t 3 i s a pr ime number.

and

(* *) \everypar { \de f \v ru le { l } }

\ v r u l e 3 i s a pr ime number.

What is typeset in both cases and why?

Q2. Assuming that TEX is in vertical mode, what is

the difference between:

(c) \par i ndent=Omm \i ndent\par

and

(* *) \ no i ndent\par

why?

Q3. What is the difference between:

(*I \par
and

(* * I { \par}
What is the state of TEX after executing these

commands in both cases and why?

From Input Characters to Commands

Let us start with a closer look into TEX'S way
of processing input data. Three levels of the

processing can be distinguished:

L1. Reading characters from the input file and

transforming them into tokens (lexical analysis).

L2. Expanding tokens.

L3. Executing commands; at this level TEX creates
internal lists (horizontal, vertical and math

lists), transforms them into boxes and writes

some boxes to the D V I file (using the \ sh i pout

command).
Knuth talks about "eyes," "mouth" and "stomach"

of TEX, etc.; we prefer to speak about "levels."

Names and meanings o f tokens. In order to un-

derstand what happens at the beginning and at the

end of a paragraph it is essential to be aware of the
difference between names and meanings of tokens.

Following Knuth, we will denote by "\xyz the

meaning of the command \xyz at the beginning of

the TEX job. By jxyzl we will denote a token, the
name of which consists of the letters 'xyz'. Such

a token is created by TEX from the sequence of

letters 'xyz' preceded by a current escape character,
usually backslash.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 171

Marek Rycko and Boguslaw Jackowski

For example, the token jhboxl, the name of

whch consists of the letters 'hbox,' has initially the

meaning ':'\hbox. Saylng '\let\hbox=\par' a user

may change the meaning of jhboxj to the current

meaning of I, most likely to *\par. Incidentally,
TEX replaces every empty input line with the token

/par/ regardless of the meaning of this token. The

meaning of may be +'\par, but (par/ may be

also, for example, a macro expanding to a sequence
of tokens.

Transforming input characters into tokens. From

the point of view of TEX, the input file is a sequence
of characters organized into lines. TEX reads such
characters one by one and transforms them at

level 1 into so-called tokens, according to definite
rules. For example, the following sequence of 1 5

input characters:

\ e n s p a c e b D o n . . .
is transformed into a sequence of 7 tokens:

/enspacej~on. . .
The first one is a control sequence token and the

remaining are character tokens stored by TEX along

with their category codes.
Each token created at this level is associated

with its current meaning which can be either a
primitive meaning (a meaning that is built into TEX)

or it can be a macro (a meaning that can be defined

by a user in terms of other meanings). Regarding

the meaning we can classify all tokens as follows:
(a) with respect to expandability as expandable

and unexpandable;
(b) with respect to primitivity as primitive and

macros.
The expandable tokens can be primitive, like

\ i f , \ the, \noexpand, \csname, or they can be
macros defined using \def or a;related assignment

(\edef, \gdef, \xdef).

All unexpandable tokens are primitive. T h s

group contains, among others: tokens like \hski p,
\hbox, etc.; letters and other characters; all tokens

defined by the \chardef assignment; some tokens
defined by \ l e t or \ fu tu re l e t .

Expanding tokens. Level 2 of TEX, i. e., the expansion

level, reads tokens from the input token list and

expands them. If the first token in the input token

list is expandable, level 2 of TEX expands it, that
is, replaces this token (possibly with some tokens

following it) with another sequence of tokens.

If - after the replacement - the first token is

still expandable, the expansion is repeated until the
list starts from an unexpandable token. Obviously,

this process may loop infinitely.

For example, the result of expansion of the first
token in the input token list:

IenspaceIDon. . .
is the sequence of tokens:

lkern -5emuDon. . .
because the first token enspace] is expandable

(it is a plain TEX macro) and its expansion is

' \kern. 5emu'. The token is unexpandable,
hence no further expansion takes place.

The input token list with an unexpandable

token at the beginning is submitted to level 3 of TEX.

Commands. By a command we mean an unexpand-
able (primitive) token at the beginning of the input

token list. If a command may or must have ar-

guments, only the first token is a command. For
example, in the input token list:

jkernj .5emuDon. . .
the token jkern] is the command and the tokens
' . 5em~' are arguments. They are being read as a
part of the process of executing the command.

In general, a command can read arguments

from an input list elther demanding expansion from

level 2 or not.
Level 3 of TEX-the level that executes com-

mands -is the central level. Every time t h s level

is about to execute the next command it "asks"
level 2 to prepare the input token list such that

at the beginning of the list there is a primitive

(unexpandable) token. In turn, level 2 "asks" level 1

for preparing necessary tokens.
Level 3 executes the command according to

its meaning, taking into account the current in-

ternal state of TEX, including the values of various
parameters, and, in particular, talung into account

current TEX'S mode.
One of the results of executing commands is

creation of various kinds of internal lists. The types

of lists include: horizontal, vertlcal and math lists.

At every moment TEX is in one of the follow-
ing six modes determining what type of list it is

currently constructing:

(a) vertical mode (v-mode)

(b) internal vertical mode (iv-mode)

(c) horizontal mode (h-mode)
(d) restricted horizontal mode (rh-mode)

(e) math mode

(f) display math mode

At the very beginning of a job TEX is in v-mode

and all the lists are empty. A list is constructed by
appending new elements to it. The process of list

construction can be briefly summarized as follows:

mathematical lists are converted into h-lists; an

h-list created in h-mode (material for a paragraph)

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

TEX from \indent to \par

is converted into a v-list and appended to a current

v-list; a vertical list created in v-mode is converted
to boxes by a page builder; eventually, boxes to

whch a command \shi pout is applied are written
to a DVI file.

Summary of Paragraph Construction

In the process of creating a paragraph by TEX there

are three distinct phases:

P1. Switchmg from v-mode to h-mode (opening a
new h-list - see the section 'Switching from

Vertical to Horizontal Mode').

P2. Creating the h-list. (We do not discuss t h s

phase in the paper. The notion of h-list is

explained in "The T~Xbook," pp. 94 - 95. The

systematic description of how the commands

processed in h-mode influence the state of

the h-list contain chapters 24 and 2 5 of "The

T~Xbook," pp. 267 - 287).

P3. Switchmg from h-mode to v-mode (converting
the h-list into a v-list and appending this vertical

list to the main v-list; this is discussed in the

section 'Switching from Horizontal to Vertical
Mode').

We will focus our attention on the moment of

switching from v-mode or iv-mode to h-mode and

back again.
For the sake of simplicity we confine ourselves

to the case where display math is not used inside a

paragraph.

Switching from Vertical to Horizontal

Mode

In t h s section we describe when and how level 3 of

TEX accomplishes the change of modes from v-mode

or iv-mode to h-mode.
First we say "when", i.e., we list the commands

that -if executed in one of v-modes - switch TEX'S
state to h-mode.

Then we say "how", that is, we list the actions

that TEX performs during the mode change.

Switching from vertical to horizontal mode: when.
Some commands will be called here vh-switches,
because if encountered in v-mode or in iv-mode

they switch TEY to h-mode. They can be classified

into two groups:
(a) explicit vh-si+ltches:
- "'\indent;

- *\noi ndent;

(b) implicit vh-switches (called by Knuth horizontal

commands):

- letter: any character token of category 11
(also implicit; for example, control se-

quence \d after executing the assignment

' \ l et\d=A1; the assignment associates the

token with a meaning that is primitive

in TEX);

- other character: any character token of cat-

egory 12 (also implicit; for example, control
sequence \one after executing the assign-

ment ' \ l et\one=l');

- '\char;

- a "chardef" token, i. e., a control sequence or
an active character whch has been assigned

a meaning by the command \chardef (for
example, control sequence \ae after the

assignment '\chardef\ae=" 1A'; once again,

the assignment associates the token
with a meaning that is primitive in TEX);

- "\noboundary (a new primitive that ap-

peared in TEX 3.0);

- *\unhbox, "'\unhcopy (independently of the
contents of the box being an argument);

- "\valign;
- "\vrule;

- "\hskip;

- "\hfi 1, "\hfi 11, "\hss, "<\hfi 1 neg (these - - ~ ~ -

tokens are primitive, not macros, even

though the effects they cause could be

acheved using 'k\hskip with appropriate

parameters);
- *\accent;

- "\discret ionary, '"\-;

- "\u (control space *\u is a primitive com-
mand and if used in v-mode switches

the mode to horizontal; note that nor-

mal space U, in general any space token, is
ignored in v-mode);

- $ (also the first $ of the pair $$ starting the
displayed math formula).

It should be stressed that commands "\hbox,
"\vbox and "\vtop are not switches. Such com-

mands encountered in v-mode do not change the

mode. The box (preceded by proper glue) is appen-

ded to the current v-list.

Switching from vertical to horizontal mode: how.
Assume that TEX is in either v-mode or iv-mode.

When level 3 encounters a vh-switch at the beginning

of the input token list it performs in turn the
following actions:

(a) Optionally, a vertical glue \parskip is appen-
ded to the vertical list:

- if TEX is in iv-mode and the list is empty, the
glue is not appended,

TUGboat, Volume 14 (19931, No. 3 -Proceedings of the 1993 Annual Meeting

Marek Rytko and Boguslaw Jackowslu

- if TEX is in iv-mode and the list is not empty,
the glue is appended,

- if TEX is in v-mode the glue is always appen-
ded to the part called "recent contributions"
of the main v-list.

(b) If TEX is in v-mode (not iv-mode) the page
builder is exercised, that is TEX runs the al-
gorithm that moves elements of the v-list from
the part of "recent contributions" to the part
"current page". In particular it may cause page
brealung (running the \output routine).

(c) Switching from v-mode or iv-mode to h-mode
occurs.

(d) Variables \spacefactor and \prevgraf are
assigned values 1000 and 0, respectively (these
assignments are called by Knuth "global intim-
ate assignments" and work in a rather peculiar

way).
(e) A new h-list is initialised in the following way:
- if the vh-switch that caused the mode change

was "\noi ndent, the newly created h-list is

empty;
- if the vh-switch that caused the mode change

was anything else ("\indent or any hori-
zontal command), an empty box of width
*\pari ndent is put at the beginning of the
h-list.

(f) The following elements are appended to the
beginning of the input token list:
- the contents of the token register \every-

par (normally this register is empty),
- the vh-switch, provided it is a horizontal

command; thus the explicit vh-switches
"\indent and *\noi ndent are not put back
into the input token list.

The rest of the input token list remains un-
changed.

(g) Execution of the commands from the input
token list starts. The commands are supplied
by level 2 of TEX.

Answer to the Question Q1

Let us recall the question Q1 of the first section. We
have asked about the difference between

(*) \everypar{\def\i ndent(1))
\ indent 3 i s a prime number.

and
(* C) \everypar{ \def \vru le{ l]]

\ v ru l e 3 i s a prime number.

From the point (f) of the list of actions per-
formed by TEX at the beginning of a paragraph (see
subsection 'Switchmg from vertical to horizontal

mode: how') we can draw the following conch-
sions: if a paragraph has started from the \indent
command, the token 1-1 is not put back into
the input token list, therefore after executing the
actions (a) - (f) the input token lists differ in both
cases.

In the case (*) the list is: '/defl JindentI(ll3
u i suauprimeunumber.'; in the case (**I the list
contains one more token: ' jdefl /vrulel {l} /vrule/
3ui suauprimeunumber .'.

Since redefirvng -1 has nothing to do
with the remainder of the list, the typesetting result
in the case (*) will be "3 is a prime number."

In the case (**I the token m] is first
defined as a macro expanding to the token 1 and
then the newly defined macro 1-1 is expanded
to 1. Therefore in t h s case the result will be "13 is
a prime number."

T h s example shows some of consequences of
the rule that the explicit vh-switches (Jindentj and

-1) are not put back into the input token
list after switching to h-mode.

Switching from Horizontal to Vertical
Mode

When level 3 of TEX executes commands in h-mode,
some commands cause closing the h-list and per-
forming some actions that lead to switchng from
h-mode to v-mode.

In the following subsection we say when TEX
switches from h-mode to v-mode, i.e., we list the
commands that cause switching. Then we explain
how this mode change is performed.

Switching from horizontal to vertical mode: when.
The commands listed below are called hv-switches,
because if executed in h-mode they usually cause
TEX to complete the h-mode and switch back to the
enclosing v-mode or iv-mode. Similarly to the case
of vh-switches, there are two groups of switches:
(a) explicit hv-switches:

- +\par (any token the current meaning of
which is the same as the meaning of the token /par/
when TEX starts a job);
(b) implicit hv-switches (called by Knuth vertical

commands):
- *\unvbox;
- "\unvcopy;
- *\ha1 i gn;
- *\hrul e;
- '"\vski p;

- "\vf i 1 ;
- * \ v f i l l ;

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

TEX from \indent to \par

- *\vss;

- "\vfi 1 neg;

- "\end;

- ':'\dump.

Switching from horizontal to vertical mode: how.

The behaviour of TEX when it reads a hv-switch

heavily depends on the type of the switch. If the

switch is a vertical command (implicit hv-switch),
TEX proceeds as follows:

- it inserts a token /parl at the beginning of the
input token list (before the hv-switch token),

regardless of the meaning of the Ipar/ token;

- it starts executing commands from the input

list (possibly expanding /parj if currently it is a
macro).

It should be emphasized that TEX does not

change the mode before reading the token /par/ and

that the expanded meaning of /par/ may redefine

the token that triggered the action (please note the
danger of looping).

If the switch is explicit ("\par), TEX "truly"

finishes the paragraph, performing all or some of

the actions (a) - (h) listed below.

TEX'S behaviour depends on whether the h-list

is empty or not at the moment. If the h-list contains
at least one element, all of the actions (a) - (h) are

performed. If the h-list is emply, only the actions

marked with an asterisk are executed, i.e., (e), (g)
and (h).

All possible actions are:

(a) discarding the final element of the h-list,

provided it is glue or leaders;

(b) appending to the end of the h-list the following
three elements:

- \penal ty10000 (forbid break),
- glue of the size \par f i 11 s k i p,

- \penal ty-10000 (force break);

(c) fwng the line-breaking parameters to be used
in the next step,

(d) breaking h-list into lines and transforming
this list into a v-list being the sequence of

boxes, glue, penalty items and possibly other
elements;

"(el switching from h-mode back to the enclosing
v-mode o r iv-mode;

(f) appending the v-list created in step (d) to the
enclosing v-list;

"(g) restoring the basic values of the parameters:

- \parshape=O, \hangi ndent=Opt,

\hangaf ter=l (influencing the shape of a

paragraph),
- \ l ooseness=O (influencing the number of

lines of a paragraph);

exercising the page builder if the current mode
is the v-mode (but not iv-mode), i.e., initiating

the process of moving elements from the recent
contribution part of the vertical list to the

current page.

Answer to the Question Q2

The question was:

What is the difference between:

(*) \parindent=Omm \i ndent\par

and
(C *) \noi ndent\par

Recall that we start in v-mode. The assignment

of (*) ' \pari ndent=0mrn1 is just an assignment and

does not append anything to the v-list. In both

cases the command switchng to h-mode (\indent

or \noindent) causes appending the vertical glue
of the size \parski p to the vertical list.

The command \par works differently in both

cases (see subsection 'Switchng from horizontal to

vertical mode: how') because h-lists constructed are

different:
(*) h-list at the moment of executing of the \par

command contains a box of width Omm,

(* *) h-list at the moment of executing of the \par

command is empty (the \noi ndent command
does not append anything to the h-list).

So, according to what has been said in subsection

'Switching from horizontal to vertical mode: how',

points (a) and (b), in the case (*) TEX 'breaks into

lines' a list containing:

- the empty box,

- \penal ty10000,
- \ pa r f i 1 ski p glue,

- \penal ty-10000.

The result is a one-line paragraph that is appended
to the v-list as a single box preceded by a \parski p

glue and an interline glue.

In the case (* *) only the \parskip glue is

appended to the vertical list, since the h-list is

empty at the time the \par command is executed.

Answer to the Question Q3

We have asked what was the state of TEX after (*)

executing \par and after (a *) executing {\par}.

As we already know, TEX reacts to the command

*\par performing the sequence of actions listed in

subsection 'Switchmg from horizontal to vertical

mode: how'. The results of most of the actions

do not depend on the current level of grouping.

However, the assignments mentioned in (g) are local
within the current group.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Marek Ryeko and Boguslaw Jackowski

Normally, at the end of each paragraph, Conclusions
TEX sets the values of \parshape, \hangindent,

\hangafter and \looseness to 0, Opt, 1 and 0

respectively. But if a paragraph ends with {\par}

instead of \par these values are assigned locally

within the group surrounding \par. After closing

the group TEX restores the values that the paramet-
ers had before the group started.

So, if the parameters mentioned above had
standard values before \par or {\par}, their values

do not change in both cases. If at least one of

these parameters had a nonstandard value before
\par or {\par}, executing just the \par command

would result in restoring the standard value of t h s

We would like to emphasize that it is not the

questions and answers mentioned in this paper that

are important.

Our goal was to convince the reader that having

a detailed (or, even better, formal) specification

of TEXS mechanisms one could easily deduce the
behaviour of TEX in all situations.

We have described here a small fragment of

TEX'S machmery. Although the description is only

partial and not fully precise, we believe that it makes
a lot of mysterious reactions of TEX understandable

and straightforward.

parameter, while in the case of {\par} the value of
t h s parameter would be the same as before. Acknowledgements

 or example, by redefining \par as {\endgraf} Tom& Przechlewski and Piotr Pianowski: thank
and separating paragraphs with blank lines one can you,
conveniently retain the same \parshape for several
consecutive paragraphs.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

NTS: The Future of TEX?

Philip Taylor
The Computer Centre, Royal Holloway and Bedford New College,

University of London, Egham W, Egham, Surrey, United Kingdom.

Internet: P.Taylor@Vax.Rhbnc.Ac.Uk

Abstract

Opinions on "the future of T@" cover the entire spectrum, ranging from the
defmtive statement by Knuth- "My work on developing TEX . . . has come to
an end" - to proposals that TEX be completely re-written. In this paper, an
intermediate position is taken, based on the fundamental premise that any
successor to TEX must be 100% backward-compatible, both in terms of its
behaviour when presented with a non-extended TEX document, and in terms of its
implementation through the medmm of WEB. A mechanism is proposed whereby
extensions to TEX may be selectively enabled, and a further mechanism proposed
whch would enable conforming documents to determine whch extensions, if any,
are supported by a particular implementation. Finally, a proposal is made for an
initial extension to TEX whch would have implementation-specific dependencies,
and mechanisms are discussed whereby access to such extensions could take
place in a controlled manner through the use of implementation-independent
and implementation-specific components of a macro library.

Introduction
Discussions on "The Future of TEX", both published
and via the medium of e-mail/news-basedlists, shew
an enormous dwersity of opinion: some would ar-
gue that Knuth's defmtive statement that (para-
phrased) "TEX is complete" leaves n o t h g further
to be said, whlst others have advocated that TEX
be entirely re-written, either as a procedural lan-
guage or in a list-based language; in an earlier paper,
I have myself suggested that one possible future de-
rivative of TEX might be entirely window-based, al-
lowing both input and output in textual and graph-
ical formats. But events have occurred within the
last eighteen months whch have considerably mflu-
enced my point of view, and in t h s paper I present
a far more modest proposal: that an extended TEX-
based system (hereinafter referred to as extended-
T@, or e-Tgfor short) be developed in a strictly con-
trolled way, retaining not only the present look-and-
feel of TEX but guaranteeing 100% backward com-
patibility with whatever truncation of the decimal
expansion of -rr represents the most recent canon-
ical version of TEX.

The reason for this change of heart dates from
the 1992 AGM of DANTE (the German-spealung TEX
Users' Group), to whch I had the honour to be
invited. There, Joachm Larnrnarsch, President of
DANTE, announced the formation of a worhng group

to investigate future developments based on TEX:
the group was to be called the NTS group (for 'New
Typesetting System'), to avoid any suggestion that
it was TEX itself whose future was being considered,
such activity being the sole remit of TEXS author and
creator, Professor Donald E. Knuth. The group was
to be chaired by Dr Rainer Schopf, and included rep-
resentatives of both DANTE and UK-TUG; Joachm em-
phasised that the group, although created under the
zgis of DANTE, was to be a truly international body.
An electronic mailing list, NTS-L, was announced,
and participation was invited from any- and every-
one throughout the world who wished to contribute
to the discussion.

NTS-L proved a mixed success: it certainly at-
tracted considerable interest, and in the early days
discussion was almost nonstop; but it proved ex-
traordinarily difficult to focus the dwussion, and
(like so many e-mail lists) the discussions frequently
went off at a tangent.. . But then, after the initial
burst of enthusiasm, bscussions started to tail off;
and as the time of the 1993 DANTE AGM came near,
the only questions being asked on the list were "Is
NTS dead?".

At about the same time, I was approached by
Rainer, acting on behalf of Joachun who was indw
posed, to ask if I would be interested in chairing
the NTS group; Rainer felt (quite reasonably) that he
had more than enough on his plate with his central

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Philip Taylor

involvement in the I4T~x-3 project (not to mention
h s real, paid, work!), and that he simply hadn't the
time available to make NTS the success which it de-
served to be. Needless to say, I viewed t h s offer
with w e d feelings: it was a very great honour to
be asked to chair such a group, but at the same time
the group had already been in existence for nearly
a year, and had apparently acheved nothing (in fact,
it had never even met); would I be able not only to
breath life back into the by now moribund project,
but also go further and actually oversee the produc-
tion of a realisation of NTS?

The more I thought about the problems, the
more I became convinced that the key to success
lay through simplicity: if NTS was ever to be more
than a pipe-dream, a wish-fulfillment fantasy for
frustrated TEXxies, then it had to be achevable with
finite resources and in finite time; and if the res-
ults were to be acceptable to the vast number of
TEX users throughout the world (a number which
has been estimated to be at least 100000), then
it had to be completely backwards-compatible with
TEX. Once I was convinced that I knew what had
to be acbeved, I also began to believe that it might
be possible to accomplish it. And so, with some
trepidation, I indicated to Joachun and Rainer that
I would be honoured to accept their trust and con-
fidence; I would agree to take over the NTS pro-
ject.

But the road to damnation is paved with good
intentions; and no sooner had I returned from the
1993 DANTE AGM, having once again had the hon-
our to be invited to participate, than the spectre
of TUG'93 began to loom large on the horizon;
and the more work I put into its organisation, the
more work it seemed to take. I was not alone-
I Mrlllingly acknowledge the incredible amount of
hard work put in by the entire TUG'93 commit-
tee, and i n particular by Sebastian Rahtz -but the
organisation of a multi-national conference, sched-
uled to take place at a University some 130 miles
from one's own, is a mammoth undertakmg, and
one that leaves little time for anythng, apart from
one's normal, regular, duties. And, in particular,
it left almost no time for the NTS project, to my
considerable mortification and regret. But, by the
time t h s paper appears in print, TUG'93 will be
a reality, and, I hope, life will have sufficiently re-
turned to normal that I will be able to devote the
amount of time to NTS that the project so richly de-
serves.

But enough of the background: what matters
today, and to t h s conference, is not how I as an

inhvidual partition my time; but rather what spe-
cific proposals I have for "The Future of TEY. I pro-
pose to discuss these under three main headings:
compatibility, extensions, and specifics; under com-
patibility will be &scussed compatibility both at the
source (WEB) level and at the user (TEX) level; un-
der extensions will be discussed a possible mechan-
ism whereby extensions can be selectively enabled
under user control, and a mechanism whereby an
e-Tg conformant program can interrogate its envir-
onment in order to determine which extensions, if
any, have been enabled; and under specifics will be
discussed one possible extension to TEX whch has
been widely dwussed and whch will, in my opin-
ion, provide the key to many other apparent exten-
sions whilst in practice requiring only the minimum
of additional e-Tgprimitives. I must emphasise at
t b s point that what follows are purely personal sug-
gestions: they do not purport to reflect NTS policy
or phdosophy, and must be subjected to the same
rigorous evaluation as any other formal proposal(s)
for the NTS project.

Compatibility
What is compatibility? Ask a TEX user, and he or
she will reply somethng like "unvarying behaviour:
given a TEX document whch I wrote in 1986, a com-
patible system will be one that continues to process
that document, without change, and to produce res-
ults identical to those which I got in 1986". Ask
a TEX implementor, on the other hand, and he or she
will reply "transparency at the WEAVE and TANGLE
levels; if e -Tg is truly compatible with TEX, then
I should be able to use exactly the same changefde as
I use with canonical TEX, and get a worhng, reliable,
e -Tg as a result". Two overlapping sets of people;
two totally different answers. And yet, if e-T# is
to be generally acceptable, and even more import-
ant, generally accepted, we have to satisfy both sets:
the users, because without them the project Mrlll be
still-born, and the implementors, because without
them, parturition won't even occur! How, then, can
we satisfy both sets? The answer, I believe, lies in
the question itself: e-Tgmust be TEX; it must use,
as its primary source, the latest version of TEX. WEB,

and it must make changes to TEX.WEB in a strictly
controlled way, through the standard medmm of
a changefile; that is, e-Tgmust be representable as
a series of finite changes to standard TEX. WEB.

But if e -Tg is to be a changefde, how is the
implementor to apply h s or her own changefile
as well? Fortunately there are several ways of ac-
complishng t h s : the KNIT system, developed by

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

NTS: The Future of TEX?

Wolfgang Appelt and Karin Horn; the TIE system,
developed by Dr Klaus Guntermann and Wolfgang
Riilling; and the PATCH-WEB system, developed by
Peter Breitenlohner. Each of these will, in varying
ways, allow two or more change files to be applied to
a single WEB source; thus the (system independent)
changes whch convert TeX . Web into e-TeX . Web
can be implemented in one changefile, and the (sys-
tem dependent) changes whch implement e-Tpfor
a particular combination of hardware and operating
system can be kept quite separate.

But t h s does not quite accomplish our ori-
ginal aim: to allow the implementor to use ex-
actly the same change file for e-T@ as for TEX;
in order to accomplish this, the changes effected
by e-TeX.ch must be orthogonal to (i.e., inde-
pendent of) the changes effected by <imp1 ernent-
at ion>.ch; without a knowledge of the exact
changes effected by each implementor's version
of <i mpl ementati on>. ch, such orthogonality can-
not be guaranteed. None the less, provided that
the changes effected by e-TeX.ch affect only the
system-independent parts of TeX.Web, such ortho-
gonality is probable, if not guaranteed; unfortu-
nately, as we shall see, some proposals for e-T@are
guaranteed to conflict with t h s requirement.

So much for compatibility as far as implement-
ors are concerned: what about compatibility from
the point of view of the user? Here, at least, we are
on safer ground: the users' requirements for com-
patibility are (let us remind ourselves) "unvarying
behaviour: given a TEX document whch was writ-
ten in (say) 1986, a compatible system will be one
that continues to process that document, without
change, and to produce results identical to those
whch were acheved in (say) 1986". Thus (and here
I intentionally stress an entire sentence) the default
behaviour of e-T@ must be identical to that of T@,
given a T@-compatible document to process. What
does this imply, for e-T@ I suggest two thmgs:

Every primitive defined by T S shall have exactly
the same syntax and semantics in e-T@, and
There shall be no new primitives (because ex-
isting TEX programs may depend on \ i f x \foo
\undefined yielding - t rue- for all currently
undefined TEX primitives).

(gurus will appreciate that t h s is a considerable
simplification of the truth, but I hope they will
allow me t h s in the interests of clarity; clearly
other constraints must obtain as well, for example
identical semantics for category codes, and no ad-
ditions/deletions to the list of context-dependent
keywords).

Extensions
But given t h s as a definition of e-Tp, have we not
backed ourselves into a black hole, from which
there is no escape? How, if there are no new prim-
itives, and all existing primitives are to retain their
identical syntax/semantics, are we to access any
of the e-T@-specific extensions? I propose that we
implement one, and only one, change between the
behaviour of TEX and the behaviour of e-T@ if, on
the command-line which invokes e-TeX, two consec-
utive ampersands occur, then the string following the
second ampersand shall be interpreted as an exten-
sion (file) specification, in a manner directly analog-
ous to TEX'S treatment of a single ampersand at such
a point, which is defined to introduce a format (file)
specification. Thus there is one infinitesimally small
hfference between the behaviour of e -Tg and TEX:
if TEX were to be invoked as "TeX &&foo myfi 1 e", it
would attempt to load a format called &foo; e-Tg, on
the other hand, would attempt to load an extensions-
file called foo-I suggest that the chances of t h s
causing a genuine conflict are vanishngly small.

OK, so we have a possible way out of the black
hole: we have a means of specifying an extenslons-
file, but what should go therein, and with what
semantics? T h s is, I suggest, a valid area for fur-
ther research, but I would propose the following as
a possible starting point:

if &&<anythi ng> appears on the command line,
then e-T@shall enable one additional primitive,
\enable;
extensions-file shall commence with a record of
the form \enable (opti ons-1 i st};
options-list shall consist of a series of (?comma-
delimited?) primitives and brace-delimited
token-lists;
if a given primitive occurs in the options-list to
\enable, and if a meaning to that primitive is
given by (or modified by) e-Tg, then henceforth
that primitive shall have its e-T@-defined mean-
ing; (and if no such meaning exists, a non-fatal
error shall occur);
if a given token-list occurs in the options-list to
\enable, and if that token-list has an intrinsic
meaning to e-T@, then the effect of that mean-
ing shall be carried out; (by whch we allow
modifications to the semantics of e-Tgwithout
requiring the creation of new, or the modifica-
tion of existing, primitives; thus (re-consi der
pa r t i a1 paragraphs}, for example, might
change e-T#s behaviour at top-of-page w.r.t.
the partial paragraph whch remains after

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Philip Taylor

page-brealung; no new primitive is involved,
nor are the semantics of any existing primit-
ive changed). If the token-list has no intrinsic
meaning to e-Tg, a non-fatal error shall occur.

Thus, by modifying only that area of the initial-
isation code which inspects the command line for
a format-specifier, we allow for arbitrary extensions
to the syntax and semantics of e-Tg. What we next
need is a mechanism whereby e-Tg-conformant (as
opposed to TEX-conformant) programs can determ-
ine which extensions, if any, have been enabled;
thus a document could ascertain whether it is run-
ning in a TEX environment or an e -Tg environment,
and modify its behaviour to take advantage of facil-
ities which are available in the latter but not in the
former.

In order for a program to be able to carry out
this check in a manner which will be both TEX and
e-T@ compatible, it must use TEX-compatible meth-
ods to check whether further e-Tg-compatible com-
patibility checks are supported: if we assume that
the proposals above are implemented, then there
is one reliable way of determining whether we are
running (1) under TEX, or under e-Tgwith no exten-
sions enabled, or (2) under e-Tgwith (some, as yet
undetermined) extensions enabled:

\i f x \enable \undef ined

. . . pure TeX, o r e-TeX w i t h

no extens ions

\ e l se

. . . extended e-TeX

\f i

T h s relies, as does much existing TEX code, on
\undef ined being undefined; perhaps one exten-
sion implemented by e-Tgmight be to render \un-

de f ined undefinable, just to ensure the integrity of
such checks!

Once we are sure we are running under e-Tg
with extensions enabled, we are in a position to
make further environmental enquiries; but to do so
will require an a priori knowledge of whether the
environmental enquiries extensions have been en-
abled: a chcken-and-egg situation! Thus we need to
proceed in a slightly convoluted manner, in order to
ensure that we don't trip over our own bootstraps.
Let us posit that, in order to enable environmental
enquiries, we use something like the following in our
extensions-file:

\enable { {env i ronmental -enqui r i e s } }

Then, in our e-Tg-compatible source (having en-
sured that we are running under e-T# with ex-
tensions enabled), we need to be able to write
something like:

\i fenabled { {env i ronmental -enqui r i es}}

But we can't do this without first checlung that
\i fenab l ed is defined.. . Clearly t h s is becoming
very messy (rather like one's first attempt at writ-
ing handshaking code for networking; how many
times do you have to exchange are-you-therelyes-
i'm-here; are-you-theres before it's safe to proceed
with real data?). Fortunately, in this case at least,
the algorithm converges after one further iteration:
our TEX-compatible/e-Tg-compatible/totally-safe-
environment-checking code becomes:

\i f x \enabl e \undef i ned

. . . pure TeX, o r e-TeX w i t h

no extens ions

\ e l se
\i f x \i fenab l ed \undef ined

e-TeX w i t hou t t h e b e n e f i t

o f env i ronmental enqui r i es

\ e l se

. . . e-TeX w i t h env i ronmental

enqui r y suppor t

\ f i

\f i

(A similar approach could be used if environmental
enquiries were implemented through the medium
of \enabl e {\i fenab l ed} rather than \enable

{ {env i ronmental -enqui r i e s } } ; it is a philosoph-
ical question as to which is the 'cleaner' approach).

One interesting issue, raised by the anonymous
reviewer, remains to be resolved: if an e-Tguser de-
cides to (a) enable some speclfic extension(s), whilst
leaving others disabled, and (b) to dump a format
file, what happens if that format file is loaded with
a different set of extensions enabled? I have to con-
fess that the answer to that question is unclear to
me, and that an initial investigation suggests that
extensions should only be permitted during the cre-
ation of the format file, not during its use; but that
could have implications in the \ d i sab le function-
ality elsewhere referred to, and for the moment at
least I prefer to leave this as a valid area for further
research. Perhaps the whole extension/format area
requires unification, and the enabling/disabling of
extensions should simply become a part of the r6le
of Ini-e-Tg.

Specifics

So far, I have concentrated on a generic ap-
proach to the question of e-Tg, and quite intention-
ally proposed only an absolute minimum of &ffer-
ences between TEX and e-T& but once the frame-
work is in place, we are in a position to consider
what features are genuinely laclung in TEX. This is

180 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

NTS: The Future of TEX?

a very contentious area, and one in whch it neces-
sary to tread warily, very contentious area, and one
in whch it is necessary to tread warily, particularly
in view of Professor Knuth's willingness to regard
TEX as complete: after all, if the creator and author
of TEX sees no need for further enhancements, who
are we, as mere users, to question h s decision? For-
tunately there is both precedent and guidelines; at
the end of TeX. Bug, one finds the following text:

"My last will and testament for TEX is that no fur-
ther changes be made under any circumstances.
Improved systems should not be called simply
'TEX'; that name, unqualified, should refer only
to the program for which I have taken personal
responsibility. -Don Knuth

Possibly nice ideas that will not be implemen-
ted.

classes of marks analogous to classes of
insertions;
\showcontext to show the current loca-
tion without stopping for error;
\show commands to be less like errors;
\everyeof to insert tokens before an \ i n -

p u t file ends (strange example: \everyeof

(\noexpand] will allow things like \xdef

\ a { \ i n p u t f oo l !)

generalize \l e f t s k i p and \ r i g h t s k i p to
token lists (problems with displayed math
then);
generalize \wi dowl i ne and \ c l ub l i ne to
go further into a paragraph;
\l astbox to remove and box a charnode if
one is there;
\ pos t t o l e rance for t h rd pass of line
breaking.

ideas that will not be implemented.

several people want to be able to remove
arbitrary elements of lists, but that must
never be done because some of those ele-
ments (e g , kerns for accents) depend on
floating point arithmetic;
if anybody wants letter spacing desperately
they should put it in their own private ver-
sion (e.g., generalize the hpack routine) and
NOT call it TEX."

Thus we have clear evidence that there are some pos-
sible extensions to TEX which Professor Knuth does
not completely deprecate; he may not wish them to
be incorporated in TEX, but I think we may safely
assume that he would have no violent objection to
their being considered for e-T@.

But there is another source of mformation, too,
in which he makes it plain that there is an area of
TEX in whch an extension would be deemed legitim-
ate, and here (very surprisingly, in my opinion), he
has suggested that the semantics of an existing TEX
primitive could legitimately be modfied as part of

the system-dependent changes to T# itself, without
violating his rules for the (non-)modification of TEX.
T h s arose during discussions between hmself and
others includng (I believe) Karl Berry and Frank Mit-
telbach concerning the implementation of an inter-
face to the operating system; Don suggested that
it would be legitimate to extend the semantics of
\ w r i t e such that if the stream number were out of
range (perhaps a specific instance of 'out-of-range',
for safety, e.g., \ w r i t e 18 { . . . I) , then the para-
meter to that \ w r i t e could be passed to the operat-
ing system for interpretation, and the results made
available to TEX in a manner still to be defined.

When I first learned of this, I was horrified (and
I still am.. .); not only is this a proposal to abuse
\ w r i t e for a purpose for which it was never inten-
ded (and in a manner which could wreak havoc on
any program extant which uses \ w r i t e 18 { . . . }
to send a message to the console, whch it is per-
fectly entitled to do (cf. The T f l o o k , pp. 226 &

280)), it is a proposal to extend \ w r i t e in a system-
dependent manner. I found (and find) it hard to
believe that Don could have acceded to these sug-
gestions.

But these proposals received a wide airing, and
were met by quite a degree of enthusiasm; not be-
cause people wanted to abuse \w r i t e , but because
they were desperate for an interface to the oper-
ating system. Such an interface grants TEX incred-
ible flexibility: one can sort indices, check for t f m

files, in fact do anything of whch the host oper-
ating system is capable, all from within TEX, and
in such a way that the results of the operation be-
come available to TEX, either for further calculation
or for typesetting. Of course, there were also (very
sound) arguments against: "what if the program per-

, /no log /nocon- forms a $ d e l e t e [?:. . . I * . * ' *
f i rm?" was asked over and over again. (The com-
mand deletes all files to which the user has delete ac-
cess, regardless of directory or owner, and recurses
over the whole file system under VAX/VMS; there
are equally powerful and unpleasant commands for
most other operating systems.) What indeed? But
if this feature were implemented through the abuse
of \w r i te , there would not necessarily be any provi-
sion for disabling it; and users would become legit-
imately paranoid, scanning each and every imported
TEX document for the slightest trace of a system call,

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 181

PMip Taylor

in the fear that computer viruses had migrated into
their (previously safe) world of TEX.

Of course, TEX has never been truly safe; per-
haps we are fortunate that the challenge of writing
computer viruses appears not to be of any interest
to those who are also capable of writing TEX (or per-
haps those who have the intelligence to prefer, and
to write in, TEX, have by definition the intelligence
to see that writing viruses is a &stinctly anti-social
activity, and to refrain therefrom). I will not elabor-
ate on t h s point, just in case it falls into the wrong
hands.. .

And so, I propose that one of the first exten-
sions to e-T@ which the NTS project should con-
sider is the implementation, in a clean and con-
trolled way, of a genuine \system primitive; imple-
mented through the medium of \enable, it would
be up to each individual user whether or not to al-
low of its use, sacrificing security for sophstication
or preferring power and performance over paranoia.
We might posit, too, a \ d i sab le primitive, so that
even if the system manager had installed e-Tgwith
\system enabled, an indwidual user could choose
to disable it once again (there are complications in-
volved in t h s which I do not propose further to dis-
cuss here).

And once we have a \system primitive, we can
then implement, through its mebum, a whole raft
of further extensions which have from time to time
been requested by the TEX community (the follow-
ing are taken almost verbatim from a submission by
Mike Piff):

Delete a file;
Rename a file;
Copy a file;
Create a directory;
Remove a directory;
Change directory;
Spawn a sub-process.

But these tasks are, by their very nature, incredbly
operating-system specific; whilst I might type $ de-

1 e t e f o o . bar ; , another might write %rm foo. bar

(I hope I have the latter syntax correct. . .); and surely
one of the most important reasons for the use of
TEX is its machine-independence: documents behave
identically when typeset on my IBM PS/2 and on the
College's VAX/VMS 6430. But if e-T@users were to

start hard-coding \system ($ d e l e t e foo . bar ; }

into their e-T@ files, machne-independence would
fly out of the window; and e-T# would have sown
the seeds of its own destruction.. .

And so, I propose that for each e-T@ imple-
mentation, there shall exist a macro library whch
wdl be composed of two parts: a generic compon-
ent, created by the NTS team, whch implements in
a system-independent manner each interaction with
the operating system whch is deemed 'appropriate'
(whatever that means) for use by e-T& and a specific
component, created by each implementor of e-T@,
whch maps the generic command to the system-
specific syntax and semantics of the \system primit-
ive. The macro library is by defmtion easily extens-
ible: if the e-T@ community decides that it needs
a \sysAdel e t e - f i 1 e macro, and no such macro ex-
ists, it will be very straight-forward to implement:
no re-compilation of e-Tawdl be required.

Clearly there is an enormous amount of further
work to be done: how, for example, is the \sys-

tem primitive to return its status and results? What
is to happen if \system spawns one or more asyn-
chronous activities? Which of Don's "Possibly nice
ideas" should be integrated into e-T@ at an early
stage? How about the 'Skyline' question, or \ r e -

cons i derparagraphs? Should e-T# be based, ab
initio, on TeX--XeT? How are the NTS team to liaise
with the TWG-MLC group, and with other interested
parties? How are we to ensure that practising ty-

pographers, designers, and compositors are able to
contribute their invaluable ideas and skills to the
development of e-TW Some of these questions will,
I hope, be debated openly and fully on NTS-L; others
must be answered by the NTS team themselves (and
here I have to confess that because of the pressures
of t h s conference, the membershp of that team is
still in a state of flux). What matters most, at least
to me, is that the phdosophy and parahgms whch
characterise TEX are perpetuated and preserved for
future generations: we have, in TEX, somethng very
precious - the creation of a single person, Professor
Knuth, whch has had a profound effect on the pro-
fessional lives of thousands, if not tens of thou-
sands, of people; if we are to seek to extend that
creation, then we must do so in a way whch is en-
tirely faithful to the ideals and intentions of its cre-
ator. I truly hope that we are up to that task.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Future for TEX

Roger Hunter
TCI Software Research, Inc.
1190 Foster Road
Las Cruces, NM 88001
USA

Internet: rogerenmsu . edu

Abstract

The future of TEX is invisibility. The role of TEX should be similar to that of the

microprocessor in a PC. The microprocessor is the heart of the system, but is
completely invisible except for the sticker which says "intel inside." TEX must

be made invisible with appropriate front-ends. These front-ends should empha-

size the manipulation of content over appearance and reverse the trend toward
WYSIWYG (What You See Is What You Get) interfaces with their emphasis on ma-

nipulation of appearance. Content-oriented interfaces provide far greater user

productivity than WYSIWYG systems, and TEX is the ideal basis for such systems.

Introduction

TEX has a guaranteed future only if its use grows

significantly. That growth can occur only if TEX is

made much easier to use than it is now. Back-ends

to TEX are necessary for any form of output so there

are many of them. There must be strong pressure
to create front-ends that make TEX much easier to

use. The onslaught of WYSIWYG clickery makes the

survival of TEX entirely dependent on good front-
ends.

The Good and the Bad

Listing the good and bad features of TEX seems to be
a favorite pastime of TEX lovers, and I am no differ-

ent. The main difference in my list is that features

often considered advantages are listed as disadvan-

tages. First, the good features of TEX. The primary

goals of Don Knuth's original TEX project head the
list.

1.

2.

3.

4.

TEX produces superb output. This was Don's

primary motive when he set out to create TEX.

TEX source is archival. The documents are in

a standard ASCII form. The TEX language pro-

vides a linear, ASCII form whch can be used as

a standard for storage and interchange.

TEX is available on most platforms. Ths, to-

gether with its archval nature, ensures that TEX

documents can be created and used anywhere
there i s a reasonably capable computer.

Many scientific journals accept compuscripts in
TEX and provide style files.

And now7 the disadvantages.

1. The TEX language is a compromise. It has been
said that the TEX language is understandable

by everybody because instructions are written

in plain English, not undocumented numerical

codes. If Don Knuth had felt that the TEX lan-

guage was the way we should read and write

mathematics, then there would have been no
need to create TEX, the program. Simply spec-
ifying the language would have been enough.

The only justification for the form of the TEX

language is as a linearized portable input to
TEX, the program. In its present form, it is a
compromise between the need to provide some

support for direct entry and the need to pro-

cess the result by computer. It would be won-

derful to remove this compromise in favor of

computer processing, but it is probably much

too late.

The two-dimensional mathematical notation

evolved because it optimizes the use of the

high-bandwidth human optical system. There

are many mathematical expressions whch are

virtually impossible to grasp in TEX input

form- all are instantly comprehensible in TEX

output form.

Publishers had hoped that TEX would be the
solution to the rising cost of typesetting, and

now they are not so sure. A major reason

for this is that authors do not write style-

independent TEX code. Leslie Lamport defines

and discusses visual design and logical design

in the k?&X User's Guide & Reference Manual.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Roger Hunter

Logical design is the key to good TEX documents,

but without a way to enforce it, most authors

end up filth a large component of visual design

in their code. This is a nightmare for publish-
ers who need to typeset using a specific style,

and is the main reason why author submissions

are so costly. It invariably costs more to use
the author's original TEX document than it does

to re-key the entire thing. If the publishers will

not champion TEX, the future cannot be bright.

Stamp out abominations like \ i t word \ r m !

TEX will have no future unless authors are

completely isolated from the TEX input lan-

guage. Although it is archival, the TEX language
is unfit for humans. A proper front-end elimi-

nates these problems.

2. TEX is in the public domain. .4s wonderful as

this may seem at first, it means that now that
its creator has stopped working on it, everybody

wants a say. We have gone from a committee of

one to a committee of the entire world. How
much progress can a committee of t h s size
make?

3. TEX is extensible. Ths is marvellous for de-

velopers of macro packages and styles. It is
a disaster in the hands of authors. Authors de-

light in creating new sets of macros and in using
them inconsistently in a document. Publishers

find it much cheaper to re-key an entire docu-

ment than to rewrite an author's macros to fit a
style.

The policy of the .American Physical Society,

the American Institute of Physics and the Op-

tical Society of America on submitting docu-

ments is the right one. To have a paper ac-
cepted, you must use the REVTEX styles, but

most importantly, you are prohibited absolutely

from defining and using macros. Amusingly,
the REVTEX guide carefully explains that there

are two classes of macros, and then states flatly
that you cannot use either kmd!

4. TEX is stable and unchanging. Whatever the ar-

guments or the reality, making this statement
gives TEX a dead feel. Even if TEX itself does not

change for the forseeable future, the continued

development of packages like FT~x3.0 provide

the necessary life. This is mostly a matter of
public relations.

TEX Must be Invisible

TEX is the microprocessor, LATEX is the operating sys-

tem, and appropriate front-ends are the application

programs. Just as the average user has no need to

know how a microprocessor works, and a user of
an application program needs only- a rudimentary

knowledge of the operating system, the average user

should never be exposed to TEX. These days, most

drivers of cars do not know how an engine works.

Although knowing how an engine works may some-

how make you a better driver, requiring that you

know how7 an engine works would be ridiculous. It
would ensure that most people would not drive. We

have roughly the same situation for TEX. Requir-
ing that users know TEX will ensure its demise. A

technology is mature when most of its users do not
know how that technology works. We should strive

to make TEXnology mature.

The High Cost of Visual Design

A recent study estimates that 2% of the United States
gross domestic product is lost through unproduc-

tive use of computers. At the head of the list of
offending behaviors is "font futzing" - endless fid-

dling with the appearance of a document. A section
head at Sandia National Laboratories told me that h s

researchers spend huge amounts of time preparing

reports using WYSIWYG Windows word processors.

They spend most of the time changing fonts and
page layout. When the documents are submitted,
they must be reformatted to fit the required style.

The process takes hours because all of the format-

ting is local and visual.

The same effects exist in the TEX world. Most of
us are familiar with people who fall in love with TEX

and run around saying, "Look at this incredible effect
I just produced" or, "Look at this fantastic macro I

created." Highly paid professionals endlessly play-

ing with TEX macros to get just the right visual effect

are wasting their time doing work that is unproduc-
tive and for which they are not trained. The only
way to avoid this problem is to provide a front-end
which enforces or strongly encourages the principles

of logical design.

Interface is Everything

Given that invisibility of TEX is essential and that

logical design has a large productivity payoff, in-

terface is everything. Attractive interfaces are the
reason WYSIWYG word processors are simply tak-

ing over. They are addictive. Their addictive nature

and their total focus on visual design makes them

one of the most insidious productivity sinks in ex-
istence today. The salvation of TEX lies entirely in
the development of good interfaces, and those in-

terfaces must encourage and, if necessary, enforce
logical design over visual design.

184 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Future for TEX

The main reason for using TEX instead of one of

the leading word processors is to obtain the far su-

perior output. Because there are no alternatives, you

are willing to put up with the input language. The sit-
uation with symbolic systems like Maple and Math-

ematica is the same. The benefits of these systems

must outweigh the disadvantages of their unnatural

user interfaces before someone will choose to use

them. This restricts use to a tiny fraction of the

potential audience. By making the interface much
better, the number of TEX users could be increased

several orders of magnitude. The same argument
applies to Maple and Mathematica.

The Right Interface

The essential features of a good T# interface are as
follows:

The interface must encourage authors to work

directly at the computer.

The interface must encourage logical design

over visual design.

The penalty for using the computer over the

blackboard or a pencil and paper should be mini-

mal. The language you use to read and think about

your document should be the language you use to
enter it into the computer. The time taken entering

TEX codes is wasted time which could be used for

developing the content.

The current crop of Windows-based word pro-

cessors (Word for Windows, m Pro, and Word Per-

fect are the three most popular) define WYSIWYG.
The essential feature is visual design. One manifes-

tation is that you are encouraged to interact with an

image of the printed page. Another is that you se-

lect text and give commands whch determine the
appearance such as the font face, point size, and
weight.

The fact that all of the best-selling word proces-

sors use a WYSIWYG interface has lead to the per-

ception that there is no other way. In fact, the use

of a GUI (Graphical User Interface) has become sjn-
onyrnous with WYSIWYG. The result is that millions

of people are forced to view crude representations

of the printed page through screen windows which

never match the pages. At the same time, they have

come to spend much of their time at the computer

worrying about page layout and typography.

Interfaces which emphasize logical design pro-
vide a much better way to create, edit, and interact

with documents. The main features of a logical in-
terface are a s follows.

Lines are broken to the screen window.

You select text and designate it as a section
head or apply an emphasis.

Fonts and colors used on the screen are chosen
to maximize screen readability and are indepen-

dent of the choices made for the printed output.

Just as there is a perception that GUI implies
KniSWG, there is a corresponding perception that

logical implies linear. People seem to think that an

interface which uses logical design requires that you

enter obscure codes to get the results you want. The

primary example in the TEX world is the notion that
using the TEX input language directly is the only right

way. T h s is simply false -it is possible to create a

logical interface which displays and has you interact

with mathematics in its natural (TEX output) form.

Some Interface Issues

TEX is a batch system. There are a number of in-
teresting problems which arise when you consider

implementing a much more interactive system.

The first problem has to do with TEX'S line

breaking algorithm. I have often heard people say

that the ultimate system would allow you to interact
with pages in the way you do with a WYSIWYG word

processor, but the page layout would be updated in-

stantly using TEX. Even if you translate t h s desire

to a logical system, there are drawbacks. For exam-

ple, you could be typing or editing toward the end
of a paragraph and have all of the lines above you

in the paragraph jiggling about as you type. This

is because TEX'S line breaking algorithm can change

the breaks throughout a paragraph when you make a
change anywhere in the paragraph. The effect could

be very distracting.

Another question whch simply doesn't arise in

a batch system has to do with spaces. Who owns

the spaces? When TEX puts extra space around op-
erations, relations and punctuation in batch mode,

the question makes no sense. When you are dealing

with an interactive system, the insert cursor must

be placed somewhere, and the choices made have
a significant effect on the feel of the system. For

example, where should the cursor be placed as you
move through the expression x + y? TEX inserts extra

space around binary operations. Should the cursor

position between x and + be next to the x, next to

+, or somewhere in between? If you take the posi-

tion that the + owns the extra space, then the cursor

should be placed next to the x. This seems like a very

minor point, but it has a large effect on the feel of

the system.
Blue Sky's Lightning Textures provides a way

to enter TEX codes and see the resulting TEX output

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 185

Roger Hunter

almost instantly. This is a completely different ap-

proach which I view as complementary to the inter-

face I have described. Lightning Textures provides

the greatest value for typesetters and others per-
forming hgh-end layout work. The interface I have

described is meant for authors.

Scientific Word

Scientific Word is a Windows-based scientific word

processor based on the principles that I have men-

tioned. It provides a logical interface to documents

and stores LATEX files. It includes Richard Kinch's

TurboT~X for previewing and printing.
Experience with users of Scientific Word has

been very interesting. Initially, many users feel ex-

tremely uncomfortable with the fact that they are
not interacting with a page image. They spend a

great deal of time previewing to see if they really

will get the results they want. As they continue to

use the system, the frequency of previews decreases.
Once they have learned to trust the system, they re-

lax and focus on the content exclusively. Only in

the final stages do they concern themselves with the
printed form. The habits developed by using WYSI-

WYG systems are difficult to break, but once they

have been broken, users realize how much more pro-

ductive they can be.
Direct interfaces between Scientific Word and

symbolic systems are also being developed. An ex-

perimental version of Scientific Word lets you inter-
act directly with Maple using the same principles em-

ployed for TEX. Maple's input language is invisible

in this system - the notation for input and output is

the standard, natural, mathematical notation.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

LEXITS: Context-Sensitive Legal Citations for LATEX

Frank G. Bennett, Jr.*
Law Department
School of Oriental and African Studies
Thornhaugh Street
London W C l H OXG

Internet: fbennettecl usl. ul cc . ac. uk

Abstract

The most widely used style guide for legal publications in the United States
is A Uniform System o f Citation (the so-called 'Blue Book'). LEXITE?(is a W X

style which automates typeface selection, citation truncation, citation cross-
referencing, and the production of tables of authorities in the Blue Book style.

This article discusses the design problems encountered in coding Lm@, points

out a few of the dirty tricks whch were used to smarten up its response to con-

text, and comments on further work that waits to be done in this area. A reference

card for use with LEX&X is included.

The Blue Book

Law reviews in the United States are a curious corner

of the publishng world. Traditionally, most such

journals are edited entirely by law students, who

compete in their first year of study for admission

to staff positions. Participat~on in law review, par-
ticularly in an editorial post, is viewed by potential

employers as an important token of accomplishment

in malung hiring decisions. And so it goes that des-

pite the long hours and lack of pay, the competition

for these positions is quite intense.
The most widely used style in U.S. law reviews

is A Uniform System o f Citation1 (the so-called 'Blue

B ~ o k ') , ~ compiled and periodically revised by staff at
the Columbia Law Review, the Harvard Law Review

Association, the University of Pennsylvania Law Re-

view and the Yale Law Journal. The Blue Book re-

quires that the origin of each proposition asserted

or referred to by the author be precisely identified in

* The author wishes to thank Boris Pevzner and

Steve Bellovin for their patience with and comments

on the inital beta 1.0 release of LExFE?(and its friends.

The (as yet unrealized) BJBTEX analogue discussed un-

der Further Work was suggested by Steve Bellovin.
Gratitude is also due to George Greenwade for his

encouraging words on the initial release, and to An-

drew Hoddinott for introducing me to TEX in the first

place.

A UNIFORM SYSTEM OF CITATION (14th ed. 1991).
With the emphasis on 'blue'. With the opposite

stress, the term refers to a rather different type of

literature.

a footnote citation. It lays down detailed and specific

rules concerning typeface conventions, short-form
citations and cross-referencing. All of these rules
vary according to the nature of the source as well

as the context in which the citation appears, which

makes the proofreading of legal citations a particu-

larly unenviable chore.
Indeed, in the eyes of some, the Blue Book's

rules are specifically tailored to test the persistence
and will power of those lucky enough to find their
waking lives revolving around its creed. Nonethe-

less, there is enough underlying consistency in its

conventions that typeface selection and the format-
ting of short-form citations can be almost com-

pletely automated. The key to context sensitivity as

required by the Blue Book is the ability to remember

key portions of the text on a start-to-finish reading.

Both law review editors and TEX are capable of doing
this; the difference is that TEX is a good deal faster,

and rather less likely to develop indigestion.
The Reference Card at the end of this article,

together with the tables illustrating the use of style
blueprints and citation templates, should contain

all of the information necessary for ordinary use

of L,ExITE?(. The flow diagram in the Reference Card
should help the user to visualize how the style op-

erates. If I have accomplished my original purpose

in writing the code of Lmjljj, it should be possible

for a reader who is generally familiar with both ETEX

and the Blue Book to make a copy of the Reference
Card and the tables, read no further than the end of

this sentence, and immediately begin using LEXT$
productively in his or her own work. This should be

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Frank G. Bennett, Jr.

the first and final test of L~~irjY's utility. The Blue

Book is bad enough by itself; if make-easy software

for it requires a lengthy manual, one might as well

not bother.

On the slightly reckless assumption that I have
accomplished my original purpose, the scope of this

article is limited to a general overview of the design

of LEXIT~, with a few ancient mariner's tales of prob-

lems that cropped up in the course of simultan-

eously drafting the style and learning the rudiments

of the TEX language. The following section explains
how LEXIT~ attempts to reduce the citation format-
ting process to a manageable set of units. T h s is

followed by a discussion of some of the more enter-
taining problems dealt with by the code. The article

closes with some comments on further work that is

waiting to be done in t h s line.

The LEX&X Style Engine

The format of any Blue Book citation can be fully de-

scribed in terms of six essential text units, and nine

punctuation bridges (seven, actually, two of which
have a plural 'alter ego', for a total of nine in all).

The text units each require up to two associated

typefaces, whch I will refer to as the main and al-
ternative typefaces for each text unit. The presenta-

tion form of any Blue Book citation can be described

in terms of text units, associated typefaces, and

bridges; and the various mutations of the citation in
subsequent references can be accomplished by ma-

nipulating units and bridges, without reference to
their actual contents. This is what makes the auto-
mation of citations possible.

In order to combine flexibility with ease of use

in an automated ~ y s t e m , ~ we can (1) define a macro
which, from a blueprint of necessary details, (2)

defines another macro which in turn, from a set of

text arguments, (3) defines macros to stand for in-
dividual citations. In step (2), only the text need

be fed to the macro; everythng else can have been

It should be mentioned that LEXIT~ is not the
first attempt to automate short-form citations. See

the materials prepared by David Rhead in connec-
tion with the QX3 project: Rhead, Towards BBT@

style-files that implement principal standards, TEX
LINE 12 (May 1990); Rhead, How might CTH3 deal
with citations and reference-lists, TEXLINE 13 (Septem-
ber 1991). The code behnd t h s proposed inter-

face, as I understand it, defines each style of citation
separately. Through the use of blueprints and the
style template macro \@l aw@newci testy1 e, LMFg

attempts t o provide a more general, customizable
interface.

Six essential text units

1. The author's name;

2. The title of the work;

3. The source in whch the cited work is located,

including any volume number;

4. The page on whch the cited work is located in

the source;

5. .4n optional reference to a particular page or

section number of the work; and

6. The tail end of the citation (usually a year of

publication, perhaps with an indication of

the editor, translator, publisher and city of

publication as well, all usually enclosed in

parentheses).

Nine punctuation bridges

1. Author-to-Title

2. Title-to-Work

3. Work-to-Source

1. Source-to-Location-page (singular and plural)

5. Location-page-to-Specific-reference-page

6. before-the-Tail-end

7. after-Id./supra (singular and plural)

defined in advance. After once feeding the details of

a particular source to a macro in this way, it should

be possible to reduce subsequent references to it to

a single, context-sensitive nickname.
To state t h s in shorthand terms, the first, most

general macro in this series can be thought of as

a 'style template', and the macros defined by it as

'citation templates'. The citation templates produce
'nickname macros', which in turn are used to pro-

duce actual printed citations in the form appropriate

to a given context.
The blueprints for use by the style template are

all contained in the file 1 exi c i t e . tex. Additional

blueprints can be added to t h s file by the adven-
turous user as required. In normal circumstances,
the user need only determine which citation tem-

plate is appropriate to a given citation, and feed it

the text of the citation as a set of arguments, along
with a nickname that will stand for the citation in

subsequent references.

Fun in the Sun

Once this basic structure is in place, it is largely a
matter of fine-tuning to bring the output of the pack-

age into line with Blue Book requirements. This sec-

tion discusses some of the tricks and kludges used
to that end. It is not a comprehensive discussion,

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

LMFjzJ: Context-Sensitive Citations

Sample 1 e x i c i t e . tex blueprint entry for LEXF$

\newci t e s ty1 elnewarti c l ea}%

{Typefaces : a ~ t h o r (x) ~ : t i t l e (i) b :~ite(s)~/citetype(a)~}%

{Bridges:author(, \) d t i t l e (, \) d c i t e (\ /\)"age(,\)drefpage(\

) % f t e r i d (\ at-/\ at-)"%

{6Ie%

{{#l}f{#2}f{#3}f{#4}f {#5}f{(#6)}f}%

a This gives the name of the citation template to be generated.

Within these sets of parentheses, for the author, title and first-cite-part portions of the citation, s , b

and i select small caps, boldface and italic type as the main typeface. S, B and I respectively select each

of these as a typeface which may be specially selected using \\. . . \\. The parentheses may not be left
empty. To use the default (roman) typeface, place some other character here.

Within this set of parentheses, a, b, c and s will classify all citations generated by t h s citation

template as being to articles, books, cases or statutes, respectively. These parentheses must not be left

empty.
These parentheses contain the citation bridges that will be placed between the portions of the citation

indicated. Two bridges, singular and plural, are separated by a / in the parentheses following c i t e and
a f t e r i d . The bridges following a f t e r i d are used to attach specific page references to Id. and supra
citations. All of these parentheses may be left empty (provided that the plural separator / is not omitted

from the two fields to which it applies).
This argument states how many arguments the finished citation template will accept. It must be a

number between 1 and 6.
f Six pairs of matched braces must appear inside this argument. Any other than the first (which

represents the citation nickname) may be left empty, but the bridges must of course take this into account.

The number of arguments inserted here must correspond with the number stated on the line above.

but may help those interested in making improve-

ments or alterations. Those wishing to dig deeper

on the technical side are invited -indeed, positively
encouraged - to have a look at the code itself, whch

is available from the major TEX archves. Those who

want a friendlier introduction to the care and feed-

ing of LEX&X are gently referred to the penultimate
paragraph of the first section of this article - after

whch they are invited to suggest improvements.

Eliminating redundancy. When I began drafting

the code of t h s style, the file 1 exi t ex . s t y quickly

grew to about 30 lulobytes, roughly the same size

as in the current release. But in its early life, IEXITS
had separate storing and printing routines for each

of the four general classes of citation; and as new

features were added it became increasingly cumber-

some to carry the changes through to each set of
routines.

Eventually the pressure of common sense over-

whelmed me, and these separate routines were col-

lapsed into a single set of macros which can respond

differently in minor ways depending upon a toggle
indicating the citation type. Whle t h s is little more

than good programming practice, it was surprising

to see the extent to which a job that initially seemed

to bristle with nasty real-world edges could be dis-

tilled into a compact and unified logical structure.

The code will no doubt tolerate a good deal

more optimization and trimming.

Expansion control. While it is processing a job,

LEX&X swaps a great deal of information between

macros. Much of t b s ends up being printed in a vari-

ety of L4T@ environments, or is exported to external

files. Rigorous expansion control is therefore crucial
if undesired smash-ups are to be prevented. And in

some places \noexpand and \ the statements were

not enough by themselves to prevent gastric chaos.

To cope with such situations, LEXIT# provides

the \@l aw@cl ean macro, which accepts a token re-

gister and an arbitrary control sequence as its argu-

ments. When used, it first defines a number of com-

mon control sequences which expand into TEX prim-
itives (whch cause difficulties if expanded at cer-

tain crucial stages of LacF#'s ruminations) as strings

of themselves: \ s t r i ng\Lexi TeX. The definition is

stored under the arbitrary control sequence name

locally, so that its scope can be limited by group-

ing. The control sequence can then safely be used to

stand for the token register in LEXFj's internal code.

The \@l aw@c1 eanup macro runs \@l awecl ean over

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 189

Frank G. Bennett, Jr.

all token registers whch might contain problematic
control sequences. If special character or formatting
commands withm a LDcF@ argument give an error
during processing, t h s may be due to the absence
of a TEX primitive invoked by t h s command from
the list of temporary definitions in \@l aw@cl ean. If
adding a suitable entry covering the command to
the list makes the problem go away, please send me
the details, and I will include the patch in future re-
leases.

Output transformations. The citation templates
produce two macros for each citation, \<blah> and
\<blah>ful l , for short- and full-form citations re-
spectively. The \<bl ah>full macro is invoked auto-
matically immediately after a citation is declared
using the citation template, unless output is sup-
pressed by the user. Afterwards, the short-form
\<bl ah> will normally be used; the \<bl ah>ful 1
form can be quietly ignored, but it is there for what
it is worth.

Short-form output in the text must be context-
sensitive. For most governing conditions, t h s is
pretty pedestrian: a variable or a macro marks the
occurrence of an event, such as a footnote number
or the name of the immediately preceding citation,
and the short-form print routine is set up to adjust
the elements of the citation accordingly. One Blue
Book rule does present special difficulties, however.

In short-form references to articles and books
for whch an author is specified, the title or name
of the work should be omitted (automatically, that
is), unless some other work by the same author in
the same typeface has been cited already. The prob-
lem is that LEX~@'s citation macros can only be ex-
panded one at a time, and they are designed to do
just one thng-make a citation now. An actual
search for a matching author would be slow, and it
would require significant and cumbersome re-design
of portions of the code. Not fun.

In the end there was a much simpler solu-
tion. The author's name itself can be defined as
a macro, by first running the register containing
the author's name through \@l aw@cl ean, and then
using \csname\endcsname to make a macro of it.
This routine is made part of the citation template.
The first time around, it is defined to expand to 1,

but if it is found to be defined already, it is set to ex-
pand to 2. With this information, the print routine
can honor the Blue Book rule without knowing whch
nickname citation is associated with the matching
author name.

Looking ahead for signals. The one element of
a citation that cannot be stored by the citation tem-

plate is the reference to the specific page or sec-
tion number where a particular proposition occurs
in the cited work. This page number must be added
after the nickname macro is created, and it must be
incorporated into the citation before it is printed.
The goal is to adopt a syntax where:

\bl uebook+(21}.

will expand into the full citation form:

or into the appropriate short form:

A UNIFORM SYSTEM OF CITATION, supra note 1 at 21.

This requires that the nickname macro look
ahead in the document before it prints its con-
tents. For the most part t h s is straightforward.
After resetting the appropriate registers to reflect
the futed information contained in the citation, nick-
name macros look ahead with WX's \@i fnextchar
command to see if the character coming up satisfies
any of a series of conditions. If the next character
is ;': or -, the print routine is bypassed, and printing
is suppressed."f the character is +, LmF@ gobbles
the +, and checks further to see if there is a second
+. If there is, it knows that the upcoming argument
refers to multiple pages or sections. If there is not,
LExF~ checks for a -, which would indicate multiple
references with the use of a singular bridge (as in
Federal Constitution sch. 5, paras. 2 & 4 (1957)). If
that is not present, then the reference must be to
a single page or section.

From LATEX'S own command syntax, it was clear
that this kind of conditional testing is possible in
TEX, but before I could implement it in LMF# I

needed to learn a fairly simple lesson about how TEX
churns through a document. The difficulty I experi-
enced is one that people who, as was my own case,
come to TEX from higher-level procedural languages
are likely to experience, so perhaps it is worth men-
tioning.

The WX command \@gobbl e is a simple macro
that accepts one argument and does nothng with it:
\def\@gobbl e#l(}. It is necessary to ensure that
\@gobbl e, when used, expands immediately before
the character or argument that is to be dispensed
with. But the TEX language does not have a means
of distinguishmg between the document 'itself' and
the macros that expand within it; it's all so much pro-
gram code. A complex set of macros such as JmF@
therefore requires careful structuring to ensure that

This feature might be required where a non-
conforming citation is used for a cited work, such
as citations whch are part of a quotation.

190 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

LDcFg: Context-Sensitive Citations

a \@gobbl e statement is the very last operation per-
formed in any chain of macros leading up to it. In

particular, it cannot be nested within an \ i f . . . \ f i

condition, because it would chew up part of the con-

dition itself, causing perhaps all sorts of strange and

wonderful thmgs to happen.

WX's \@ifnextchar hack works by storing
either the first or the second of the two alternat-

ive arguments shown to it in a particular macro,

and expanding t h s stored internal macro as its

last act. LDc1TS's \@l aweargscheck routine uses

\expandafter withn the appropriate alternative ar-

gument to \@ifnextchar to run \@gobble as its
'last' act, before invoking the next command that

needs to be chained. And so on back to the level of

the document i t ~ e l f . ~

Because the text of the initial full citation pro-

duced by the citation templates is actually written by

the \<bl ah>f u l 1 macro that they themselves define
as their own last act, +{<page number>] can be ad-
ded at the end of a citation template declaration as

well as after a nickname reference.

T h s overall scheme reduces the typing required

to specify page numbers to a minimum, and allows
the same syntax to be used for this purpose for

all types of citations. That in turn helps increase

the speed with whch a document can be prepared.

Producing tables. Once the details of a citation have
been stored in a macro, it is a (relatively) simple mat-

ter to send it to an external table for processing by

makei ndx.

Every citation in LD(F$ is flagged as being to
a book, an article, a case or a statute. You can
use LDc&X to produce lists of all citations fall-

ing into any of these four classes, simply by pla-

cing any of \makebooktab1 e, \makearti c l e tab l e,

\makecasetable, or \makestatutetab1 e before
\begi n{document}. T h s produces the files * . btb,

*. atb, *. c t b and *. s t b respectively.

Each of these files must then be sorted, us-

ing the makei ndx utility. The makei ndx program

should be instructed to use the appropriate in-

"hose following the trail back upstream in
the code will find that it goes cold at this point.

T h s is because \@law@argscheck is inserted into

the nickname macro by the citation template by first

storing it to a temporary token register \@l tok@a

and using \ t h e to invoke it. This is necessary be-

cause it falls wi thn the scope of an \xdef that is
necessary in order to "freeze" the current registers

and macros in the nickname's definition. The use

of \ the prevents \@l aweargscheck from actually
expanding during this definition.

dex style file for that type of table. These are,

respectively, 1 exi book. i st , 1 exi a r t i . i st , 1 ex-

i case. i s t and lex i s t a t . i s t . The output of each

sort should be directed, respectively, to * . bok,
?t $ < a cas or " . ~ t a . ~ Finally, the command

or commands \pri ntbooktable, \pr i n t a r t i cl e-

tab1 e, \pr i n tcase table or \ p r in t s t a tu t e t ab1 e

should be placed where the tables are to appear

when LATEX is run over the document a final time.

Apart from producing tables for actual publica-

tion, the automatic generation of tables allows cita-
tions of each class to be gathered into a single loca-

tion for proofreading. This can save a great deal of

time and eyestrain.
More expansion control. For reasons whch I

readily admit to understanding only hazily, LATEX
stubbornly refused to cooperate when I attempted to

place macros or \ the statements inside a file-write

macro based on LATEX'S own index-writing routine.

The difficulty was related to expansion; certain con-
trol sequences apparently change their meaning
between the time the file-write macro is run and the

time of the actual export via LATEX'S output routine.

It seemed as though I had a choice of either

suppressing expansion altogether (in whch case
the information in the registers or macros was often

replaced before the write statement actually went
into operation at the end of the page - resulting in

a string of citations to the last source on the text
page), or using \ i mmedi a t e to avoid the strange col-

lision with the output routine (in which case the cur-

rent page number written to the table might not be

correct).

The solution adopted in the end was to use

the \@l aw@cl eanup macro, discussed above under

the subheading Expansion Control. \@l aw@cl eanup
is a bit of a kludge, but it has the advantage of allow-

ing us to selectively control the expansion of macros

unknown to LATEX without letting them boil them-

selves down to incomprehensible primitives before
they end up in the external file.

Sorting the citations. Some materials need to

be sorted in special ways, which cannot be derived

easily from the citation. For example, some de-

cisions of foreign courts ought to be sorted first by

the name of the court, then by the date of the de-
cision. Edited books, too, should be sorted by

the name of the editor-which, in the Blue Book

style, occurs in the tail end portion of the citation.

T h s has only been successfully tested with

the DOS version of makeindx that is supplied with
emTEX. The long lines generated by I.EqT@ may
cause problems for some versions of makei ndx.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Frank G. Bennett, Jr

The easy solution adopted for this problem is
to include the nickname of each citation in the out-

put to the table file. The nickname is unique,

and the citations therefore come out in the de-

sired order, if the nicknames were chosen with t h s

sorting process in mind. The macro of the form
\l e x i c i t e { < b l ah>} can be used to invoke a cita-

tion nickname that contains a number, such as

a date. When the sorted file is read by the relevant

\ p r i n t q t a b l e command, the nickname is ignored.

Selective appearances. The user may wish to

selectively control the appearance of certain inform-
ation in the citations and tables. For this purpose,

LEYITEX uses A and - as active characters.' The syn-

tax for these is given in the reference card, and the
principle of their use is straightforward. In all of

the five main citation elements other than the nick-

name, the form A . . .)\ may be used to enclose text

that will appear in the full form of the citation, and
be eliminated both in the tables and in subsequent

short-form references. This is useful where the cita-

tion must include some explanatory note on its first
occurrence. For example:

\newinbook{ra jaro le}{Y.A.M. Raja Azlan

Shahh (as he then was, be ing l a t e r

e l e c t e d {\emYang d i -Per tuan

Agong\/})A}{The Role o f C o n s t i t u t i o n a l

Ru le r s i n Malays ia}{ \ \chapter 5 o f \ \ The

C o n s t i t u t i o n o f Malays ia: Fu r t he r

Perspec t i ves and Developments}{}{F.A.

T r indade \& H. P. Lee, eds. 19861"

In t h s example, the explanatory note of the author's

personal title will appear only in the first occurrence
of the citation.

In optional page and section number references

appended using +, -, ++ and +-, both A . . . A and

-. . .- can be used. In this context, any text within
A . . . A will appear only in the text, and not in the

tables, while -. . .- conversely suppresses enclosed

material in the text, but does export it to the table.

T h s is useful for limiting the level of detail in stat-

utory references within a table of statutes. A com-
plex example might run as follows:

' Please note that this may cause conflicts with

other styles. The next release should offer the option
of using ordinary control strings for t h s purpose,

rather than active characters.
This expands in the text to: Y.A.M. Raja Azlan

Shah (as he then was, being later elected Yang di-
Pertuan Agong), The Role of Constitutional Rulers in
Malaysia, CHAPTER 5 OF THE CONSTITUTION OF h k L 4 Y -

SIA: FURTHER PERSPECTIVES AND DEVELOPMENTS (FA.
Trindade & H.P. Lee, eds. 1986)

\constsch+-{{5, paraAsA.-5}\& (-5,

para. - - B } } ~

If a table is produced from t h s citation, it will con-

tain two entries:

\ s t a t u t e t a b l e e n t r y { { c o n s t s c h } ~ { \ r m

\I tokspec i a1 face ={ \sc }Federal

Cons t i t u t i on } { \ rm \ l t o k s p e c i a l f a c e =

{ \SC } } } ! { \ sch.-5, para.-5}}{1006}

\ s t a t u te tab l een t r y { { cons t sch } { { \ rm

\ I tokspec i a l f a c e ={\sc }Federal

Cons t i t u t i on } { \ rm \ l t o k s p e c i a l f a c e =

{ \ S C I}} !{ \ sch.-5, para.-8}}{1006}

Iterative file writes. Citations to statutes of-

ten refer to more than one section. References to

multiple page numbers of other types of works do
not cause any problem, because these specific page

references are ignored when the entry is written to

the external table. But for statutes, each section re-
ferred to becomes a sub-item in the statute table. It

would not do to have a string of sections written as

a single entry.

If the user enters the punctuation between sec-

tion numbers as \, , \& or \dash, rather than simply
, , & or --, each section reference will be separately

written to the statute table file, as illustrated above.
Note, however, that makei ndx performs an alpha-

betic, not a numeric sort of the sections; you may

need to shift the order of entries around by hand

before the * . s t a table is finally printed.

Further Work

In its current form, LmjT$ has realized most of
the goals of its author. Citations can be defined
with a wide variety of typeface combinations. Sub-

sequent abbreviation is sensitive both to context and
to the type of citation. Page and section numbers

are simple to enter, and are correctly integrated into
the final citation. Bibliographic tables can be pro-

duced automatically, and multiple statutory section

numbers are easily entered and correctly parsed for

entry into the table of statutes. Alas, there is always

room for improvement.

Memory requirements. Because LDc&X stores all

the information required to produce each citation

in TEX'S memory as the document is processed, it

has a way of running out of space on large doc-
uments. A large T$ solves the problem for any
document of reasonable length, but the style could

be made less memory-hungry. The most obvious

area of redundancy is in the paired \<blah> and

This expands in the text to: Federal Constitu-

tion sch. 5, paras. 5 & 8.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

LmjTg: Context-Sensitive Citations

\<bl ah>fu l 1 macro definitions. Most of the inform-

ation stored in both of these macros could be hived

off into the master storage macro for that citation

name, say \@ibl ah>. Then this storage macro can

be recalled by either of the citation nickname mac-

ros, whlch would then only need to add or alter any

bits and pieces necessary to their own purposes.
The design of W I T S emerged as its author

struggled to learn the basics of TEX programming;
it is therefore a certainty that there is room for

memory savings and optimization in other parts of

the code as well.

Emacs Lisp support. The Lisp extension language
for the Emacs editor is powerful enough to provide

context-sensitive support for Lm&X itself. That

is, prompting for command completion and argu-
ments could be made dependent upon the contents

of the file 1 e x i c i t e , t e x and the citation template

declarations made to the current point in the docu-

ment.

I am not a Lisp programmer myself, but the es-

sentials of such a set of routines would be:

1. The ability to scan the 1 e x i c i t e . t e x file and,

for each citation style, identiiy:

The style name;

The number of arguments required by

the style; and

Which elements are used, and whch ig-

nored, by the style.

2. The ability to scan the region from the current
point to the beginning of the document (includ-

ing any sub-documents), and identify the nick-

names of citations defined, noting the style as-

sociated w'ith them.

3. The ability to offer to define a new citationusing

an existing citation template. In proper Emacs
fashon, the key should perform auto-

completion, or offer a list of available citation

templates consistent with a partial entry. Once

a template is selected, a prompt in the Emacs

mini-buffer should call for each element of

the citation as required.

4. The ability to provide auto-completion or a list

of any citation nickname defined in the region

between the current point and the beginning of
the document (including sub-documents).

For novice users, this would ensure that citations are

entered correctly, whatever package of blueprints

is contained in 1 e x i c i t e . tex . In very long docu-

ments, it would make it easy to ensure that, in revi-

sion, nicknames are never used before they are ini-
tially defined.

BIBTEX analog, Some users may prefer to maintain

their citations in a separate file, as is done with

BIBTEX. With a little re-drafting, a similar approach

could be adopted by LExFj$, without abandoning

the ability to enter citations into the document dir-
ectly. Two primary changes would be required.

One is an environment macro (say, \stash1 c i tes)

whlch would perform the storage operation si-

lently (without introducing citations into the text or

the tables). The other is to introduce a toggle for

each nickname macro, which would indicate whether

it has once been cited in the document, so that a full-

form citation is produced the first time, and short-

form citations thereafter.

Proxies. Some sources have long and cumbersome
names. Both good taste and clarity demand that

these be replaced by a shorter form in subsequent
references. Foreign statute names are also often cus-

tomarily referred to by an abbreviation that cannot

be derived directly from the text units of a Lm@X

citation. To cover these cases, LmF@ should provide

one more option (probably =), whose usage would
follow that of +, ++, +-, * and -. This nickname

needs to be properly incorporated into full citations,

and should replace the standard text of subsequent

citations wherever appropriate.

Parallel citations. The most difficult problem still
to be addressed is that of parallel citations. Law

cases, in particular, often appear in more than one

source. Some journals require that the specific page

reference for a proposition be given for each source,
even in subsequent abbreviated citations.

The problem is clear. In its current form, T&3
only knows about the six memorized citation ele-
ments, plus a single page reference. Parallel cita-

tions require that Lm1Tg memorize the complete

details for the remaining portions of the citation,

and accept additional specific page numbers if ne-

cessary.
The syntax and programming strategy for t h s

is in hand, but I will hold radio silence until I have a

working solution to release.

Page Ranges

George Greenwade has suggested that the page spe-

cifier set in initial citations should contain an option

for specifying a range, which would then be enforced
in subsequent citations. Because the accuracy of

legal documents is often of critical importance, this

is clearly a good idea, and will be included in the

next release of LmF@.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Frank G. Bennett, Jr,

Ending Note

Lm$$ is free of charge. The only conditions at-
tached to its use are, first, that it be circulated as
a complete package, together with its copyright and
permission notices, and second, that LEJ$$ and its
author be duly cited whenever it is used in the pre-
paration or production of material for publication. I
am always open to bug reports, and happy to receive
suggestions for improvement.

I hope that Lm$@ will prove useful enough
to attract more law journals and legal publishers
into the TEX fold. In particular, many law journals
today would benefit from TEX'S proficiency in type-
setting foreign scripts. If t h s ability is combined
with greater speed and certainty in the preparation
of legal manuscripts, perhaps we shall see the al-
ternatives rejected for failure to state a claim.

Standard LExF@ ver. 1.8 Citation Templates

\newbook{blahl}{B. Cardozo}{The Growth of The Law}{1924}+{15}.

-B. CARDOZO, THE GROWTH OF THE LAW 15 (1924).

\newbook{blah2){}{Eastern Air Lines, I n c . , 1978 Annual Report}{1979}+{15}.

-FASTERN A I R LINES, INC., 1978 ANNUAL REPORT 15 (1979).

\newman{blah3}{Comics Magazine Ass'n of America}{Press Release No.-Sl}{Sept.-16, 19541+{15}.

-Comics Magazine Ass'n of America, Press Release No. 51 15 (Sept. 16, 1954).

\newman{blah4}{}{Telephone conversation with Douglas Bori sky, Senior Revising Editor of t h e

\\Columbia Law Revi ew\\}{Apr . 1 0 , 19861.

-Telephone conversation with Douglas Borisky, Senior Revismg Edltor of the Columbla Law Review (Apr. 10, 1986).

\newarticle{blah5}{Cox}{Federalism and Individual Rights}{73-Nw.-U.L. Rev.}{1}{1978}+{15}.

+Cox, Federalism and Individual Rights, 73 Nw. U.L. REV. 1, 15 (1978).

\newinbook{blahG}{\\O.W. Holmes\\}{Law in Science and Science in Law}{\\in\\ Collected Legal

Papers}{210}{1920}.

-0.W. HOLMES, Law in Science and Science in Law, IN COLLECTED LEGAL PAPERS 210 (1920).

\newi nbook{bl ah7}{Mai tland}{The Mystery of Sei s i n}{\\i n\\ 3 Se lec t Essays i n Anglo-Ameri can

Legal H i story}{591}{1909}.

-Maitland, The Mystery o f Seisin, IN 3 SELECT ESSAYS IN ANGLO-AMERICAN LEGAL HISTORY 591 (1909).

\newnews{blah8}{}{Abscam Jury Sees Videotape of Deal}{San Francisco Chron., Aug.-14, 1980)
{14, C O ~ .-I}{}.

-Abscam Jury Sees V~deotape of Deal, San Francisco Chron., Aug. 14, 1980, p. 14, col. 1.

\newcaseCbl ah9)CBaker v . \ FortneylC299-S.W. 2d}{563}{Mo .\ C t . \ App.\ 1957}+{564}.

-Baker v. Fortney, 299 S.W.2d 563, 564 (Mo. Ct. App. 1957).

\newecase{blahlO){Clough Mill Ltd v Martin}{[1984] 3-All ER}{982}+{986}.

-Clough Mill Ltd v Martin, [I9841 3 All ER 982, 986.

\newjcase{blahll){Deci sion of t he Tokyo D i s t r i c t Court , February 18,

1988)CHanrei j i h\=o, n .-I2951

{l32}+{133}.

-Decision of the Tokyo District Court, February 18, 1988, Hanrei jihb, n. 1295 p. 132, 133.

-Robinson-Patman Act, 15 U.S.C. s. 13-13b, 21a (1982).

\newconsti t u t i onart{blahl3}{Federal Consti tution}{1957}+{1}.

-Federal Constitution art. 1 (1957).

\newconsti tu t ionsch{b lah l4 } {Federa l Consti tution}{l957)+{1}.

-Federal Constitution sch. 1 (1957).

194 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

LEY$$: Context-Sensitive Citations

mlTga Reference Card

--I + Maybe a

After a citation template declaration for a particular

work, use the nickname to refer to that source there-

after.

The style template is called once, by 1 exi t ex . s t y at

startup. Blueprints for use by the style template are

contained in 1 exi ci t e . tex. The distribution con-
tains blueprints for the style template whch will suit

most, but by no means all, purposes.

Options and Special Commands

\lowcaseblah before any LEXIT~ citation, forces Id.

to lowercase, should it occur.

\ l ex ic i te {b lah l } is used to execute nicknames

that include a number, such as a date.

\\. . .\\ marks special typeface (usually roman)

w i t h an argument of a citation template declar-

ation.

\ lexiproof {blah} is used to generate a proof sheet

giving most of the permutations of a nickname

fired by a given citation template. This is useful

when creating or editing citation templates.

?< used immediately after a LEX&X citation, sup-

presses output of a bare citation template de-

claration or nickname.

- used between a LEXITG citation and an optional

page or section reference, suppresses output of

the citation template declaration or nickname,

and of the page reference.

a LmTj is by Frank G. Bennett, Jr., Lecturer in
Law at the School of Oriental and African Studies,
University of London.

(Internet) f b e n n e t t @ c l usl. u l c c . ac. uk

+ appends a page or section number when typed

after a citation template declaration or a nick-

name. Always enclose in braces: +{I2 31.

++ appends a plural page or section argument to any

L E X I ~ citation. Enclose page numbers in braces,

and separate items with \, , \& or \dash (ranges

not supported, but do no harm when used with

non-statute citation templates and nicknames).

+- appends a singular page or section argument, but

writes multiple references to the table file. Most

often used in combination with A . . . A and -. . . -
to cope with references to multiple subsections

of a single statutory provision.

A used within appended page or section references

to enclose material that will appear only in the

text, not in the table file. Used in all other argu-

ments to enclose material that will appear only

in initial or full-form citations.

- used within appended page or section references

to enclose material that will appear only in the

table file, not in the text.

Tables

To write external table files, use:

\makebooktable (makes ;':. btb)

\makearti cl e tabl e (makes *. atb)

\makecasetab1 e (makes * . ctb)

\makestatutetab1 e (makes *. s t b)

Process the external table file using makei ndx with

the appropriate style file and output file name:

1exibook. is t - *.bok

1 exi a r t i . i st - ?: .art

1 e x i c a s e . i s t - * .cas

lexi s t a t . i s t - ?:.sta

Place finished tables in the document using:

\pr i ntbooktable

\ p r i n t a r t i c l e t a b l e

\pr i n tcase table

\pr i n t s t a t u t e t a b l e

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Using TEX and METRFONT to Build Complicated Maps

Daniel Taupin
Universite de Paris-Sud

Laboratoire de Physique des Solides

bitiment 510

F-91405 ORSAY Cedex, France

t a u p i n@rsovax. ups. c i r c e . f r

Abstract

The aim of t h s work was to publish a catalog of all the 1 5 0 0 crags and climbable
rocks in France. The main source is an important TEX file describing all these
places, including for each one: a serial number, a quotation of its importance, its
usual name and some information about its location.

This master file is scanned by a Fortran programme which computes the
coordmates of the respective marks on the paper and performs some topological
analysis to settle the text labels corresponding to each mark, in order to avoid
label and mark collisions. The final result is a TEX file whch yields the assumedly
best mark and label positions.

T h s TEX map has to be superimposed to a background map representing
the coast lines, the main rivers and the major lakes of the country. T h s is done
in METAFONT with a major input of Lambert kilometric coordinates of these
features. However, the map background has to be erased at the places dedicated
to TEX~ labels : this is done using a set of METAFONT filtering files produced by
TEX macros when compiling the labels whch are " inpu t " in the METRFONT map
generating process.

Several difficulties arise, due to METAFONT limitation on numbers, and to
the limited capacities of some DVI translators, particularly DVIPS.

Together with typing - and playing - organ music
and typesetting statistics related to physical experi-
ments, one of the hobbies of the author consists of
rock climbing and especially maintaining a tentat-
ively exhaustive catalog of all the 1 5 0 0 known climb-
able crags of France outside the high mountains.

This catalog is maintained as a TEX file which
has to be printed every three years, under the name
"Guide des Sites Naturels d'Escalade de France". In
fact the main text is a plain text which does not look
very strange, of whlch we give a short excerpt :

29.02. ***(*) *= PLOUGASTEL *, SPORT, comm:

Plougastel-Daoulas, Mich: 58.4, IGN: 0417e; sit: 10 km E
de Brest; acces: par D33 (Brest-Quimper); heb: camping

sauvage impossible, camping perm. a Plougastel (St-Jean,

en venant de Brest: sortie Landerneau, en venant de Quim-

per: sortie Plougastel-Daoulas, puis suivre les panneaux),

camping munic. (perm.) a Brest-St-Marc (sur D33); roch:

quartzite, gres, marbre (exc.), c h a t : pluielneige: 1000

m m de precipitations en 150 jourslan, minimum au prin-

temps.

29.02.1 ** ** ROC'H NIVILEN, le CUBE*, SPORT,

L= (1097.7, 103.2); sit: 1,8 km W N W de Plougastel, pres

du hameau de Roc'h Nivilen; acces: de Brest prendre D33

dir. Quimper, franchir le pont Albert Louppe sur I'Elorn,

ne pas prendre la premiere route a D, mais la deuxieme

petite route, face au restaurant Ty-ar-Mor, peu avant un

arrOt de bus (ne pas aller jusqu'a I'embranchement vers

Plougastel) et la suivre W sur env. l k m d'ou un sentier

conduit au Cube; pour Roc'h Nivilen, continuer jusqu'a

quelques maisons pour prendre S un chemin qui conduit a

I 'W de Roc'h Nivilen et revient par I 'W (ne pas aller directe-

ment du Cube a Roc'h Nivilen: prive); propr: commune +
prive; roch: quartzitelmarbre (exc.), 20 voies, 18-30 m, 2-
6b, souvent equipees; biblio: TOPO-GUIDE (CAF Brest,

1984); obs: on y trouve des voies faciles ou peu soutenues

en exc. rocher; site tres frequente; ATTENTION: bien que

moins spectaculaire qu'a Pen-Hir, la corrosion des pitons

y est importante: certains pitons sont enduits au minium,

mais la partie cachee n'est pas protegee, il faut donc im-

perativement renforcer l'assurance avec des coinceurs.

29.02.2 *** LVMPERATRICE *, SPORT, L=

(1098.5, 103.5); sit: au S de I'Elorn, 2 km E du pont de

I'Elorn (route Brest-Quimper); acces: de Brest dir. Quim-

per, sortie Plougastel, redescendre vers Brest sur 300 m,

tourner a D vers Le Passage, les rochers sont visibles au

niveau d'un transformateur, NE PAS STATIONNER a pro-

ximite des rochers, mais continuer jusqu'a Le Passage,

vaste parking au bord de I'Elorn; revenir a pied aux rochers

196 TUGboat, Volume 1 4 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Using TEX and METAFONT to Build Complicated Maps

par la route; propr: prives; roch: gres quartzite (exc.), 62

voies, 30-45 m, 3b-6b; biblio: Alpi. Rando. nov. 1979,

TOPO-GUIDE (CAF Brest, 1984); obs: face N , gras par

temps humide, plus difficile en moyenne que Roc'h Nivilen;

equipement inox et rapproche dans des voies d'initiation

en face S, pour le reste equipement mediocre a pourri et

espace (intervalle moyen 5-6 m).

29.03. ** se OUESSANT, CREAC'H m, BLOCS/AVENT.,

comm: Lampaul, Mich: 58.2, IGN: 0317w, L= (1112, 50),

sit: aiguilles et chaos rocheux en bord de mer, au N W de

I'ile, a la pointe de Pern, et le long de la cbte N W de

I'ile entre le phare de Creac'h et Pors Yusin (4 km de cbte

rocheuse); acces: par bateau depuis Brest ou le Conquet,

puis 4 a 8 km a pied ou en velo; heb: camping (perm.);

roch: granite (exc., lichen dans les zones non balayees par

la mer), 10-20 m; obs: risques de marees noires; quelques

autres rochers grimpables sur la cbte S entre Pors Alan et

KergofF.

The corresponding source TEX looks like :

\ n e ~ s p e r { 2 9 . 0 2 . } { * ~ ~ ~ (~ ~) } { \ e c p } { P L O U G A S T E L }

\cm P l ougas te l -Daoul as , \m 58.4, \ i g n O4li'e ;

\ s i t 10-km E de B r e s t ; \ac p a r D33

(Brest-Quimper) ; \heb camping sauvage

i m p o s s i b l e , camping perm. \ ' a P lougas te l

(S t - l e a n , en venant de B r e s t : s o r t i e

Landerneau, en venant de

The Requirements for Maps

Obviously - and even for people who do not read
fluently the French language - such a catalog is of
poor interest if there is not a set of maps to help the
reader find the spots.

Several means of printing maps can be thought
of. The first obvious one consists in drawing the
map with a pencil and sending it to the publish-
ing company together with the TEX text, either on
dskettes or as camera ready papers. The obvi-
ous drawback is that each update of the guide-
four editions (Taupin, 1982, 1984, 1986, and 1989)
were published since 1981 and the fifth is being pre-
pared - requires a complete remake of the whole of
the drawings, whch is not a very efficient method.

Another way of doing it would consist of mak-
ing the drawings using a computer and some draw-
ing softwares like MacDraw, Microsoft Paint or Free
Hand, or in scanning a hand made picture to pro-
duce some picture file. The difficulty resides in the
fact that :

Picture files have a great number of formats :
TIFF, MSP, PCX, PCL, etc., and of course EPSF.

Pictures must be partially erased to give preced-
ence to labels indicating the names of the spots
and of the towns.

The fmal printable file should be sent to vari-
ous publishmg companies and local printing
devices whose "language" could be Postscript
as well as company specific codings like PCL.

Picture maps should be automatically regener-
ated each time a new site is included - or can-
celled - in the master file, without having to re-
build the whole of a map when only one square
centimeter has been modified.

Unfortunately, the available dv i ps are some-
what "Postscript addicted" and cannot accept other
picture formats, whle the ernTeX related drivers can
insert a lot of thngs. . . except Postscript !

Secondly, notwithstanding several messages
sent to the TEX addicted gurus, we did not find any
software able to erase selectively some areas of any
picture file.

The consequence was that the only way of hav-
ing portable pictures was to draw them using META-

FONT.

The Mapping Process

Extracting site names and locations. The first
thng to do is to scan the megabyte of master TEY
file(s) to extract the first names of the sites (e.g.,
PLOUGASTEL, ROC'H N I V I L E N) together with their
location, i.e., something like L= (1098.5, 103.5)

(case of known kilometric Lambert coordinates) or
10-krn E de Brest (case of an approximate relative
description). If the situation is given as a distance
and an orientation from a known town, a catalog of
famous towns is searched and the coordinates are
easily computed.

Of course this could be done in TEX language
but we preferred to do it faster usingusual program-
ming languages (Fortran in t h s case) able to handle
real numbers. The resulting file looks We:

S= 1 3 2902 .OO Plougastel
L= (697. 50, 103. SO)

S= 2 2 2902 . O 1 Roc'h Nivilen
L= (697.70, 103.20)

S= 2 3 2902.02 Irnp&ratrice
L= (698. 50, 103. SO)

S= 0 2 2903.00 Ouessant
L= (712.00, 50.00)

Building the map of site and town labels. Once the
above file - 1500 entries in fact - has been built, we
are faced with the hardest problem, namely com-
puting the positions of all the marks and labels (sites
and towns) in each of the 38 maps (an arbitrary nurn-
ber) so that all- or nearly all- sites have their la-
bel and their mark in the relevant maps of various

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 197

Daniel Taupin

scales, avoiding overlapping labels and labels collid-
ing with site and town marks.

T h s is actually a tough job of trial and error
geometry, definitely impossible in TEX because of its
use of heavy floating point arithmetic. We did it in
Fortran - whch offers a safer encapsulation of vari-
ables - but it could have been done in any language
like Pascal or C. Since the process is not written in
TEX it is not worth details here; we just mention that
it takes four hours on a 386 with math coprocessor,
and a long night on an average 286.

The result, however, is a series of TEX files - one
per map -which looks hke the following :

\ lochead{Bretagne} \ rx

\maperaseopen{BRETAMAP.mfc}
\newzone{15.000cm}{22.2OOcm}{.O714}\relax

\ g l o b a l \ r t h i c k = . 4 0 p t \ r x

\guidepcmap{17}\rx

\hpoint{13.523cm}{5.023cm}{\threestar}\rx

\hpoint{14.109cm}{2.084cm}{\twostar } \ r x

\hpoint{14.92lcm}{l6.22lcm)(\onestar } \ r x

. . . .
\Hpoint{4.25lcm}{14.82lcm}{\Bne

{2.677cm}{.366cm}{\f tc 2902 P l o u g a s t e l } } \ r x

\Hpoint{.394cm}{15.606cm}{\bse

{2.160cm){.269cm]{\ftb 2903 Ouessant} } \ rx

\Hpoint{.063cm}{13.389cm}{\bsw

{2.800cm}{.269cm}{\f tb Pte de Dinan 2904}}\rx

. . . .
\Hpoint{.200cm}{.200cm)(\cartouche{5.171cm}

{1.500cm}{3.571cm}{l7: B re tagne} { lO} } \ r x

\hpoint{.000cm}{.000cm)C\vrule w i d t h \ r t h i c k

h e i g h t 22 .2OOcm}\rx

\hpoint{15.000cm}{.000cm}{\vrule w i d t h \ r t h i c k

h e i g h t l6 .2Olcm}\ rx

. . . .
\maperasecl ose

Most of the macros invoked in t h s text are
\ hpo in t or \Hpoint (a boxed variant) whch just
s h f t and raise the \hbox containing the text of the
t h r d argument by the first two. This method was
described ten years ago by D. Knuth (The T m o o k ,

page 289) in a chapter named "Dirty Tricks" and the

macros \bne, \bsw, etc., just adapt the shape of the
label to the case where it is at the northeast of the
mark, at the southwest, etc.

What is more interesting is the presence of
the macros \maperaseopen and \maperasecl ose

which open a file (here BRETAMAP . mfc) whch will
contain METAFONT macro calls. In fact each of
these macros llke \bne writes its paper coorlnates
(the first two arguments) and its TEX generated box
size into the map erase file in the form:

mapcance1(2.422cm,14.893cm,6.944pt,Opt,28.112pt)

mapcancel(6.992cm,17.411cm,7.653pt,Opt,62.709pt)

mapcancel(l2.66lcm,l5.143cm,6.944pt,Opt,39.028pt)

mapcance1(12.376cm,8.571cm,6.944pt,Opt,29.806pt)

Thus, provided it is i nput by METAFONT, the
BRETAMAP . m f c will tell whch rectangles of the back-
ground map have to be erased when generating the
map of the region (Britanny in t h s case).

Generating the background maps. Several prob-

lems have to be dealt with:

1. getting the x, y coordinates of the geographc
features, adapted to each map scale and origins;

2. drawing hashed lines to represent water areas
within sea and lake contours;

3. erasing the places dedcated to spot name la-
bels.

Getting the coordinates of the geographic features.
The x, y coordinates must obviously be entered
manually, and for example the description of the
river Seine contains METAFONT statements llke:

W r i t e l i n e (8 0 3 , 485, ese); % Pont de Brotone

W r i t e l i ne(790, 489, ese) ; %

W r i t e l i n e (7 9 0 , 493, ne); % Pont d ' Y v i l l e

W r i t e l i n e (7 9 9 , 494, r i g h t) ; % D u c l a i r

W r i t e l i n e (7 9 1 . 5 , 496, ssw); %

W r i t e l i n e (7 8 4 , 498, r i g h t) ; % La B o u i l l e

W r i t e l i n e (7 8 5 , 502, nne); % Grand Couronne

W r i t e l i ne(794, 505, ene) ; % Cante l eu

Wri t e l i n e (7 9 4 , 511, ese) ; % Rouen

W r i t e l i ne(783, 509, wsw) ; % Oi s s e l

and the Atlantic side is slrmlar:

w r i t e l i ne(968, 597) ; % Dunkerque

w r i t e l i ne(959.8, 561.920) ; % Cal a i s

w r i t e l i n e (9 4 9 . 9 , 543.647); % Cris-Nez

w r i t e l i n e (9 3 4 , 542) ; % Boulogne/M.

w r i t e l i n e (8 8 7 , 540) ; % Baie de somme

w r i t e l i n e (8 7 6 , 550); % Baie de somme

w r i t e l i n e (8 7 7 , 540) ; % Baie de somme

w r i t e l i n e (8 4 4 , 507) ; % Dieppe

. . . .
The w r i t e l i ne and Wri t e l i ne METAFONT

macros differ by the fact that one concatenates the

198 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Using TEX and METAFONT to Build Complicated Maps

points to the current path as broken lines while the
other assumes Bezier curves with stated orientation
of the path at the given point. Once all points of a
given feature, for instance the river Seine, have been
accumulated in a METAFONT path variable, it has
just to be drawn with the convenient pen.

Drawing hashed water areas. T h s is slightly more
difficult. First, and if it is not an Inland lake, the con-
tour has to be completed so that a f i 11 . . .cycle is
not meaningless. Secondly, this filling should not be
a full black area but an area covered with parallel
equidistant lines. T h s is simply done by :

f i 1 1 ing inside all the wanted contours in black;

cu l l ing the picture to ones for safety;

superimposing to the whole of the picture a set
of parallel lines, regardless of the contour; as-
suming xxa, xxb, yya and yyb to be paper map
boundaries, t h s done by:

f o r k=yya s t e p O. l in un t i l yyb:
draw (xxa, k)--(xxb, k) ;

endfor;

cul l ing the picture to values r 2; thus only
the spots at mathematical intersection of the
parallel lines and the filled area are kept; t h s is
a very simple METAFONT command, namely:

c u l l c u r r e n t p i c t u r e dropping (- i n f i n i t y , 1);

Obviously, the coast and river lines have to be
drawn after the hashng of the water areas.

Erasing the place for town and site labels. T h s
is simply done by some METAFONT command like
i nput BRETAMAP. rnfc; then the mapcancel com-
mand is rather simple, namely:

de f

mapcancel(expr xxm, yym, h t r e c , dprec, wdrec)=

numeric yybas, yyhaut , xxgauche, x x d r o i t ;

yybas:=yym-dprec;

yyhaut:=yym+htrec;

xxgauche:=xxm;

xxdro i t : =xxm+wdrec ;

c u l l i t ;

u n f i 11 (xxgauche, yybas) --(xxgauche, yyhaut) --

(xxdroit,yyhaut)--(xxdroit,yybas)--cycle;

enddef;

Generating the complete maps. T h s just requires
the correct insertion of the backround font charac-
ters in the gui depcmap referenced as the fifth line of
the TEX source previously given. Two excerpts of the
results are given in the last two (one column) pages
of t h s paper.

The Difficulties

As previously explained, map designing under
TEX+METAFONT is easy. . . in principle. In fact the
difficulties do not come from TEX nor METAFONT
fundamentals, but they come from the actual limit-
ations of both METAFONT and the printing drivers.

The METAFONT difficulties. METAFONT appears
to be a powerful language to handle pictures but it
exhlbits some drastic limitations in the handling of
real numbers. In fact, regardless of the computer, it
has no floating point arithmetic, but it manipulates
numeric values in fixed point representation, with a
maximum of 4095.9999. Thus, lulometric coor&n-
ates withm European countries are entered without
problems, but problems happen when map scaling
wants to convert a latitude of 800 km to paper co-
ordinates under a scale of 1:100 000.

Of course such a point will fall out of the sheet,
but the mere computation of its paper coordinate
makes M ETAFONT complain about "overflow", stop,
and restart with unprebctable results when the &a-
gnostic is ignored.

Since we cannot have ten versions of the path
of the river Seine fit for every possible scale, the
wri t e l i ne macro must check the input parameters
against the scale and slup the point before an over-
flow can occur.

Other problems occur with water areas. In fact a
small error in the recording of coast points can lead
the water contour to look like an "8" rather than
simple convex contour; in that case, METAFONT has
difficulties in finding what is the internal part of
the "8" and what is outside, and this often results
in.. . emptymg the sea, a thing which was not really
planned by the Creator!

On the other hand, METAFONT has no prob-
lems creating characters of size 15cmx22cm, at
least in the 300 DPI resolution. Thus, our first at-
tempt consisted in malung one character for each
or the 38 maps, with the pleasant consequence of
having only one font for all our maps.

The driver problems.
Previewing on MS-DOS computers. Our first at-
tempts with 15 x 22cm2 characters were surprisingly
displayed without bfficulty although slowly by Eber-
hardt MATTES' dvi scr .
Printing in PCL language (Laserjet). Problems
began with dvi hpl j whch refused to print some
maps but not the others. After investigation we
found that the problem disappeared if we carefully
erased (using the cu l l command) all possible points
outside the actual map. Then we were able to print

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Daniel Taupin

the full set of maps on various HP-Laserjet printers
using dv i hpl j.
Postcript printing. Serious problems were en-
countered when trying to convert the D V I to Post-
script. We used the dv i ps of best reputation, namely
the one created (and maintained) by Tomas Rolucki
(with Radical Eye Software copyright) which is avail-
able in C on various f t p servers.

We discovered first that many versions of this
dv ips crashed with the diagnostic "No memory"
when run on 286 versions. Obviously several 386
versions do exist, but their behaviour strongly de-
pends on the C compiler used to build the execut-
able programme, and on the fact the configuration
takes advantage or not of the 386 memory extension
facilities. Half a dozen were tried - for that purpose
but also to convert other papers with many fonts -
and the most powerful seems to be the version re-
cently provided by F. Popineau (~co le Superieure
dl~lectricite, Metz, France), whch was compiled with
Metaware High C using the PharLap DOS extender.

In fine, we crashed against a repetitive dia-
gnostic, independent of the total number of fonts
in the D V I , which was:
DVIPS.EXE: Cannot a l l o c a t e more than 64K!

After some trials, we understood that t h s was
a drastic limit of d v i ps not depending on the total
size of the font or the PK file but of the size of the
characters. Thus we had to change all the META-
FONT scheme in order to divide each maps into a
number of characters so that they do not exceed
(approximately) the square inch. Obviously, the total
number of characters was multiplied by a factor of
20 (iq the present version at least) so that the maps
had to be shared into several fonts, whch in turn
resulted in a more sophsticated T~Xing of the maps.

Of course a logical solution would have been to
use one font per map (as does BMZFONT) but at the
other extreme, the number of fonts in a D V I is also
hardly limited in both TEX and the drivers!

Up to now, this unsmart way of cutting maps
seems to work and the Postscript file seems to be ac-
cepted by most (not all) Postscript printers we have
access to. But the question of the conformity of all
Postscript printers is another problem.. .

A conclusion METAFONT and the dv i -to-xxx
drivers are intended to manipulate text and char-
acters of a reasonable size, typically the square
inch. But buildmg maps strongly exceeds the typical
sizes of characters and distance conversions exceed
M ETA FONT'S handling of numeric values.

A great deal of possible solutions to t h s prob-
lem can be thought of, for example permitting TEX to

handle thousands of fonts. We think however that

the simplest should be to have just two increased
dimensions:

1. Eight byte handling of numerics in METAFONT,
still in fixed point for compatibility with previ-
ous versions.

2. dv i ps drivers able to handle huge characters -
as the dv i hpl j by Eberhardt Mattes -in the
hope that t h s is not due to a Postscript hard
limitation.

Some Examples

Two maps are presented in t h s paper?

1. A general of France showing the layout of the
37 regional maps, with seas and main rivers
drawn by METAFONT as previously explained,
and towns and caption built in T#.

2. A regional map of Britanny showing some sea
areas, the river Loire and a number of site labels
possibly shifted (Puits de la Roche) to avoid col-
lisions.

Bibliography

Daniel Taupin, "Guide des Sites Naturels d'Escalade
de France", COSIROC, Paris, 1982, 1984, 1986,
1989.

Donald E. Knuth, The THbook, Addison-Wesley Pub-
lishing Company, 1984.

Editors' Note: It proved impossible to generate
the map fonts at the full resolution of the typesetter,
due to METAFONT limitations. The examples are
therefore set at only 300 dpi.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Using TEX and METRFONT to Build Complicated Maps

Carte d 'assemblage

250 km

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 201

Daniel Taupin

ia
Cap de la Hahue 5 0 ~ 5 0

I

St-Vigor

,5006 Montmart in
Breche-au-Diable 1402'

Clecy 1401. ,1403 Falaise

e Avranches 15002 Mortainl
H ,6101 ForCt de Halouze

M t D o l 3508, La Fosse-Arthour 5001' 16105 ~ o r n f r o n t l

02201 V de la Rance A 6 1 0 4 ForGt dlAnda ines/

0 Dinan Puits de la Roche 6106,

Alencon . I
Vieux-Vy/C. 3505, . Fougeres

Mezieres IC. 35;la La Colmont 5304. 16103 Alpes Mancelles ,
Le Blaireau 3504 3507 R. de Saut-Roland

a1i'201 Sille-le-G I

. Rennes
Change-IPS-L. 5303,

,5305 Torce-Viviers

oLaval
,3506 Moul in-du-B.

Entrarnmes 5302, '5301 Saulges ' I e Mans

,3503 St-Just ,7202 La Jeune Panne

/ no 18: Normandie, Pays de Loire /

202 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

0 krn 50 krn - Lac de Maine 4904, ,4905 La Garenne

y 2 Pierre

,Chadefonds/L 4903

,4906 Le Pilier de Montrevaul t

Nantes

,14402 La Sevre ~ a n t a i s e l

C h s t e a u t h i b a u d 44031'
Cholet

MusicT~X: Using TEX to Write Polyphonic or Instrumental Music

Daniel Taupin
Universite de Paris-Sud
Laboratoire de Physique des Solides
batiment 510

F-91405 ORSAY Cedex, France
taup i n@rsovax. u p s . ci rce . f r

Abstract

MusicT~X is a set of TEX or LATEX macros - initially posted three years ago and

now used by dozens of music typesetters - which are fit to typeset polyphonic,

instrumental or orchestral music. It is able to handle an important number of in-
struments or voices (up to nine) and staffs (up to four for each instrument). Many

of the usual ornaments have been provided, including several note sizes whch

can handle grace notes or extra music like cadenzas.

A recent enhancement consisted of providing a facility for several staff sizes

in the same score, thus enabling full size staffs to smaller "reminding" staffs.
The WX version is not really fit for printing full scores but it has be used

to produce musicographc texts including many (small but numerous) music ex-

cerpts.
Except for the risk of typing errors due to a sophsticated set of macros, the

major difficulty still resides in glue and line breaking in the case of irregular mu-

sic and slurs.

What is MusicT~X?

Several packages exist which provide the personal

computer addict a facility for typesetting music. For

instance we saw examples from Personal Composer

and Musictime, and we experimented first with the

M E X package (see Steinbach and Schofer, 1987,
1988), the latter being based on TEX and METAFONT.

However, all these packages have limitations: either

the output quality (Persona! Composer) or the com-

plexity of the score (Musictime), or the number of
staffs (IWQX).

Thus, a few years ago, we could not resist the

temptation of building a new package - in fact a

set of TEX macros and fonts - whch would be able

to typeset complex polyphonic, orchestral or instru-
mental music. In fact our primary intention was
to extend MWEX to several staffs, but was quickly

apparent that rewriting the whole of the macros

was a better solution and we only used MEX'S

METAFONT code as a starting point.

Although not perfect, MusicT~X appears to be

a powerful tool which can handle up to nine distinct

instruments, each having from zero (for lyrics) to

four staffs. Of course it can handle chords or poly-
phonic note settings in the same staff and we have

used it to typeset realistic music for choirs and in-
struments, including organ.

It must be emphasized that MusicT~X is not

intended to be a compiler whch would translate into

TEX some standard musical notations, nor to decide

by itself about aesthetic problems in music typing.
MusicT~X only typesets staves, notes, chords, beams,

slurs and ornaments as requested by the engraver.

Since it makes very few typesetting decisions, Mu-

sicT~X appears to be a versatile and rather powerful

tool, but in turn it should be interfaced by some pre-
compiler for the engraver who wants aesthetic de-

cisions to be automatically made by somebody (or

something) else.

One can also mention a secondary use of Mu-

sicT# as a target language for music coding, namely
the MIDI2TeX package by Hans Kuykens, which

translates MIDI data files into MusicT~X source code

(Kuykens, 1991). Notwithstanding capacity prob-

lems, a WQX style has also been provided (it was

used to typeset the present paper) but t h s music-

t ex style is fit for musicographic books rather than

for normal scores to be actually played.

MusicT~X principal features

Music typesetting is two-dimensional. Most of the

people who just learned a bit of music at college

probably think that music is a linear sequence of
symbols, just as literary texts to be TEX-ed. In

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Daniel Taupin

fact, with the exception of strictly monodic instru-

ments like most orchestral wind instruments and

solo voices, one should be aware that reading mu-

sic is actually a matricial operation: a musician play-
ing a chordal instrument - guitar, piano, organ -

or loolng at more than one staff - a choir singer,
a conductor - successively reads columns of sim-
ultaneous notes which he or she plays or at least

watches in order to be in time with the others.

In fact, our personal experience of playing pi-

ano and organ as well as sometimes helping as an

alternate Kapellmeister leads us to think that actual

music readmg and composing is a slightly more com-
plicated intellectual process: music reading, music
composing and music thinking seems to be a three-

layer process. The musician usually reads or thinks
several consecutive notes (typically a long beat or

a group of logically connected notes), then he goes
down to the next instrument or voice and finally as-

sembles the whole to build a part of the music last-
ing roughly a few seconds. Then he handles the next

beat or bar of his score.
Thus, it appears that the most logical way of

coding music consists of horizontally accumulating

a set of vertical combs with horizontal teeth as de-

scribed below:

71
sequence1

This is the reason why the fundamental macro
of MusicT~X is of the form

where the character & is used to separate the notes

(or the groups of notes) to be typeset on the respect-

ive staffs of the various instruments, starting from
the bottom.

In the case of an instrument whose score has

to be written with several staffs, these staffs are sep-

arated by the character 1 . Thus, a score written for
a keyboard instrument and a monodic or single staff

instrument (for example piano and violin) will be

coded as follows:

for each column of simultaneous groups of notes. It
is worth emphasizing that we actually said "groups
of notes": this means that in each section of the pre-

vious macro, the music typesetter is welcome to in-

sert not only chord notes to be played at once, but

small sequences of consecutive notes whch build
something he understands as a musical phrase. This

is why note typing macros are of two l n d s in Mu-

sicT@, namely the note macros which are not fol-

lowed by spacing afterwards, and those which in-

duce horizontal spacing afterwards.

The spacing of the notes. It seems that many books

have dealt with this problem. Although it can lead

to interesting algorithms, we thnk it is in practice a

rather minor one.
In fact, each column of notes does not neces-

sarily have the same spacing and, in principle, this

spacing should depend on the shortest duration of
the simultaneous notes. But t h s cannot be estab-

lished as a rule, for at least two reasons:

1. spacing does not depend only on the local
notes, but also on the context, at least in the

same bar.

2. in the case of polyphonic music, exceptions can

easily be found. Here is an example:

where it can be clearly seen that the half notes

at beats 2 and 3 must be spaced as if they were

quarter notes since they overlap, which is obvi-

ous only because of the presence of the indica-

tion of the meter 4/4.

Therefore, we preferred providing the en-

graver with a set of macros having specific spacings
(\noteski p) whose ratio to a general basic spatial

unit \el emski p increases by a factor of a (incid-

entally, t h s can be adjusted):

\notes . . . & . . . & ... \enotes %

1 basic spatial unit

\Notes . . . & . . . & . . . \enotes %

1.4 basic spatial units

\Notes ... & . . . & . . . \enotes %

2 basic spatial units

\NOTes . . . & . . . & . . . \enotes %

2.8 basic spatial units

\NOTES . . . & . . . & . . . \enotes %

4 basic spatial units

\NOTES . . . & . . . & . . . \enotes %

5.6 basic spatial units

The size of both the basic spatial unit (\el em-

ski p) and the note-specific spacing (\noteski p) can

be freely adjusted since they are not \global . In ad-

dition, MusicT~X provides a means of adjusting the

basic spacing \elemski p according to an average

number of elementary spaces within a line (macro
\auto1 i nes).

Music tokens, rather than a readymade generator.
The tokens provided by MusicT~X are:

2 04 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Using TEX to Write Polphonic or Instrumental Music

the note symbols without stems;

the note symbols with stems, and hooks for

eighth notes and beyond;

the indications of beam beginnings and beam

ends;

the indications of beginnings and ends of ties

and slurs;

the indications of accidentals;

the ornaments: arpeggios, trills, mordents,

pinces, turns, staccatos and pizzicatos, fer-

matas;

the bars, the meter and signature changes, etc.

As an example, a half note of pitch A (the A

at the top of the bass clef) with stem up is coded as

\ h u a and all pitches above that A are represented
with lowercase letters up to z; uppercase letters rep-

resent grave notes, i.e.; those usually written under

the bass clef. In the same way \wh h produces an A
(the one in the middle of the G clef staff, i.e., 445 Hz

approx.) whose duration is a whole note, \qu c pro-
duces a C (250 Hz approx.) whose value is a quarter

note with stem up, \cl 1 produces a C (125 Hz ap-

p r o ~ .) whose duration is an eighth note with stem
down, etc.

It is worth pointing out that pitch coding in

MusicT~X is related to the actual note pitch, not to

the note head position under a given clef. Thus, if

the typesetter wants to change the active clef of a

part of the score, he doesn't have to change the pitch

codings, perhaps only the sense of the stems and of
the beams.

To generate quarter, eighth, sixteenth, etc.
chords, the macro \zq can be used: it produces a

quarter note head whose position is memorized and

recalled when another stemmed note (possibly with

a hook) is coded; then the stem is adjusted to link
all simultaneous notes. Thus, the perfect C-major
chord, i.e.,

is coded \zq c\zq e\zq g\qu j or, in a more con-

cise way, \zq{ceg}\qu j (stem up): in fact, single
notes are treated.. .like one-note chords.

Beams, Beams are generated using macros which
define their beginning (at the current horizontal po-

sition), together with their altitude, their sense (up-

per or lower), their multiplicity, their slope and their
reference number. This latter feature -the refer-
ence number - appears to be necessary, since one

may want to write beams whose horizontal extents

overlap: therefore, it is necessary to specify whch

beam the notes hang on and which beam is terrnin-

ated at a given position.

Setting anything on the score. A general macro

(\zcharnote) provides a means of putting any se-

quence of symbols (in fact, some \hbox{ . . . 1) at any

pitch of any staff of any instrument. Thus, any syrn-

bol defined in a font (letters, math symbols, etc.) can

be used to typeset music.

A simple example. Before entering other details, we

give below an example of the two first bars of the

sonata in C-major K545 by MOZART:

The coding is set as follows:

\beg i n{musi c }

\de f \nb i n s t r u m e n t s { l } \ r e l a x % s i n g l e i n s t r u m e n t

\nbpor tees i=2 \ re l ax % w i t h two s t a f f s

\genera lmete r { \mete r f rac44} \ re lax % 4/4 meter

\ d e b u t e x t r a i t % s t a r t r e a l score

\ e t r o i t % l O p t n o t e spac ing

\temps

\Notes \ ibuOfO\qhO{cge) \ tbuO\qhOg~\hl j \ e n o t e s

\temps

\No tes \ i buOfO\qhO{cge}\tbuO\qhOg\rel ax

I \ q l l \ s k \ q l n\enotes

\ b a r r e % bar

\Notes\ibuOfO\qhO{dgf}l\qlp i \ e n o t e s

\notes\tbuO\qhOg 1 \i b b l l j 3 \ q b l j \ t b l l \ q b l k \ e n o t e s

\temps

\Notes\ibuOfO\qhO{cge}\tbuO\qhOg~\hl j \ e n o t e s

\ f i n e x t r a i t % end e x c e r p t

\end{musi c}

\i buOfO begins an upper beam, aligned on the

f , reference number 0, slope 0.

\tbuO terminates t h s beam before writing the

second g by means of \qhOg.

\qh . . indicates a note hanging on a beam.

\s k sets a space between the two quarters at the

right hand, so that the second is aligned with

the third eighth of the left hand.

\ql p is a quarter with a point and stem down.

\i bbl lj 3 begins a double beam, aligned on the

C (j at this pitch) of slope 0.1 5.

Signatures. Signatures are usually stated for all in-
struments, such as: \general si gnature=- 2 which

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 205

Daniel Taupin

sets two flats on each staff; however t h s global sig-
nature can be partly overridden by instrument spe-
cific statements such as: \ s i gnaturei i =l whch
puts one sharp on the staffs of instrument number
2 (ii). Of course, the current signature may change
ar any time as well as meters and clefs.

Transposition. Provided some precaution is taken
concerning the accidentals, MusicT~X can transpose
or partly transpose a score. In fact, there is an in-
ternal register named \transpose, the default value
of whch is zero, but whch may be set to any reas-
onable positive or negative value. Then, it offsets all
symbols pitched with letter symbols by that num-
ber of pitch steps. However, it will neither change
the signature nor the local accidentals, and if, for ex-
ample, you transpose by 1 pitch a piece written in C,

MusicT~X will not know whether you want it in D b , in
D or in Dti. This might become tricky if accidentals
occur within the piece, which might have to be con-
verted into flats, naturals, sharps or double sharps,
depending on the new chosen signature. To circum-
vent this trouble, relative accidentals have been im-
plemented, the actual output of whch depend on the
pitch of t h s accidental and of the current signature.

Grace notes and cadenzas. In addition to its facility
for generating either sixteen point or twenty point
staffs with note heads of corresponding size, Mu-
S~CTEX also allows the user to type smaller notes, in
order to represent either grace notes, cadenzas or
a proposed realization of a figured bass. This may
give somethng like:

Selecting special instrument scores. A frequent
question is: "Can I write an orchestral score and
extract the separate scores for individual instru-
ments?" The answer is 95% yes: in fact, you
can define your own macros \mynotes. . . \enotes,
\myNotes . . . \enotes with as many arguments as
there are i n the orchestral score (one hopes this is
less than or equal to 9, but T'XpertS know how to
work around it) and change their defmtion depend-
ing on the selected instrument (or insert a test on the

value of some selection register). But the limitation
is that the numbering of instruments may change,
so that \ s i gnaturei i i may have to become \s i g-
natu rei if instrument iii is alone. But, in turn, t h s
is not a serious problem for average TEX wizard ap-
prentices.

How to get it

The whole distribution fits on a single 1.2Mbyte
or 1.44Mbyte diskette. It is also available
on anonymous f t p server rsovax. ups. ci rce. f r
(1 30.84.1 28. loo), after selecting the subdirectory
[anonymous .musi ctex]. Several other f t p sites
also provide it, especially f t p . t ex . ac . u k and
f t p . gmd . de. All sources are provided, includ-
ing fonts. It can also be automatically e-mailed
(uuencoded) by means of the message SENDME MU-

SICTEX sent to FILESERVeSHSU. BITNET.

Implementation

The macro file MusicT~X contains approximately
2500 lines of code, approximately 80 000 bytes. T h s
requires your score to be compiled by the most ex-
tended versions of TEX (65 000 words of working
memory), or with "BigTEX" processors which are un-
fortunately slow on 286 PCs, due to a great deal of
disk input/output.

In particular, notwithstanding the fact that a
great many dimension registers have been moved to
\fontdi men registers - an ugly but efficient way of
doing it - the number of registers it uses can hnder
its compatibility with some FQX styles or with LATEX
itself in case of restricted memory availability.

Recent easy enhancements. Many enhancements
have been asked for, and this is proof that Mu-
sicT~X is considered useful by many people. Some
of these enhancements whch seemed hard were in
fact rather easy to implement, for example, small
notes to represent grace notes and cadenzas or nar-
row staffs to represent informational score - not
to be played - like the violin part above the actual
piano staffs to be played by the reader. But others
may induce heavy problems, for example, the need
of having nice slurs and ties.

The tie/slur problem. While typesetting notes and
even beams is a rather simple problem because it is
local typesetting, ties and slurs are much more diffi-
cult to handle.

Or course there is little problem in the case of
a typesetter wanting a slur or a tie binding two con-
secutive notes, not separated by a bar. In practice
t h s very restricted use of slurs or ties can easily be

206 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

MusicTEX: Using TEX to Write Polyphonic or Instrumental Music

solved by putting some symbols extracted from the
s l u r l6 or s l urnl6/sl urn20 fonts somewhere on
the staffs using the general use \zcharnote macro.

But serious music engravers know that many
ties are supposed to link notes whch are on both
sides of a bar, which is a likely place to insert line
breaks, so that the tie coding must have various ver-
sions and sizes to resist that possible line break-
ing. What has been said about ties is still more ser-
ious in the case of phrasing slurs which may extend
over several bars, lines and sometimes pages. In this
case, their shape is not only a question of produ-
cing a long curved symbol of nice looking shape, it
also has to cope with glue. Unfortunately, the way of
typing music does not accept ragged lines but equal
length lines, even for the last line of a music piece.
Thus, long distance slurs and ties need to be cut
into separate parts (beginning, continuing(s), end-
ings) whch TEX can only link using horizontal line
overlaps or \ leaders to insure slur continuity over
thls unavoidable glue.

Therefore, up to now, ties and slurs have been
implemented in a way whch may look rather ugly,
but we think it is the only way of implementing in
one pass ties and slurs whch run across glue. The
principle is to have tie/slur symbols with a rather
long part of horizontal stuff. Then, each time glue
occurs and each time a group of notes is coded while
a slur or tie is pending, an \hrul e is issued which
overlaps or links to the preceeding tie/slur symbol
so that the final output seems to contain a continu-
ous line. Unfortunately, this is possible only in the
glue expansion direction, namely in the horizontal
direction.

A recent enhancement consisted of providing
two lunds of slur macros (\i 1 egunp and \I1 egunp,
same for lower slurs) to have variable size initial and
final curved slur symbols whlch the user can choose
according to his intention to have short or long range
slur symbols.

Extensive slur size variations have not been
implemented for several reasons:

The lack of dimension registers (256 available
are nearly exhausted in LATEX+MUS~CTEX) to re-
cord the initial sizes (horizontal and vertical) of
this symbol for each slur/tie in order to make
adequate links over glue and to close it with the
symmetrical symbol.

We do not thmk it wise to introduce in MusicT~X
itself a great number of macros which would
be little used by most users and would over-
load the restricted TEX memory, resulting in too
many TeX capaci ty exceeded crashes.

The drawback of complexity. Due to the large
amount of information to be provided for the type-
setting process, coding MusicT~X sometimes appears
to be awfully complicated to beginners, just as does
the real keyboard or orchestral music. This is a ne-
cessary inconvenience to achieve its power and we
can only encourage people just wanting to typeset a
single voice tune to ask their local TEX guru for a set
of simplifying macros.. .

Some examples

Many examples can be typeset from the MusicT~X
distribution, but they are not included here for the
sake of brevity. However we chose to produce a
small type size version of

1. Le cantique de Jean Racine by Gabriel Faure, in
a transcription fit for organ accompanying.

2. The Ave Maria originally called Meditation by
Charles Gounod, in a transcription fit for organ
and voice or violin (the original is written for
both a piano and an organ, which are difficult
to find in the same room).

3. A part of a personal composition for the piano
heavily using beams.

4. The beginning of Joseph Haydn's aria from the
Creation, transcribed for organ and voice.

Bibliography

Andrea Steinbach and Angelika Schofer, Theses
(1987, 1988), Rheinische Friedrich-Wilhelms
Universitat, Bonn, Germany.

Hans Kuykens, MIDI2TeX (1991), available at an-
onymous f tp : obel i x . i cce. rug. nl (in dir-
ectory pub/eri kjan/MIDIZTeX).

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Daniel Taupin

Cantique de Jean Racine
Gabriel Faure Transcriution orme Daniel Tauuin

I I
- w t -

-

13 Verbe 61 4 gal a u Tresl5 Haut notre 162- i que es- pB

I (G.O.) "
18

- -
De 2 0 l a pai- si- ble

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Mus~cTEX: Using TEX to Write Polyphonic or Instrumental Music

M6ditation - Ave Maria
Charles Gounod & J.5 Bach Transcription orgue+soliste Daniel Tauuin & Markus Veittes

Positif

Chant

Violon

(Pos.)

Positif

Ped. 16'

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Daniel Taupin

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

MusicT~X: Using TEX to Write Polyphonic or Instrumental Music

Aria No. 24
(The Creation)
Joseph HAYDN

Transcription for organ and tenor, D. TAUPIN (1990)

9 10 11 7

Mit

I Wurd und Ha- heit 1 am ge- tan, rnit I Schon- heit, Stiirk und I

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Format Compilation Framework for European Languages

Laurent Siebenmann
Mathematique, BPt. 425

Universite de Paris-Sud

91405-Orsay, France

Internet: 1 cs@matups . matups. f r

Abstract

In the third and final version of TEX (fall 1989), Donald Knuth provided his TEX

with facilities for multilingual typography: fonts of 256 characters, hyphenation
for many languages, and virtual fonts - to mention three of many wonderful

new features. However, an arbitrary limitation of TEX forces one to load all

language hyphenation patterns with naked INITEX, a primitive and notoriously

unfriendly version of TEX that has hitherto been mostly reserved for TEX wizards.
This article presents FORMAT-DUMPER, a TEX macro package in the form of a

directory of inter-related . t e x files; it offers a pleasant interactive environment
for the creation of multilingual formats and should thus enable ordinary TEX

users to build precompiled formats with a cocktail of language and other

features appropriate to their needs. FORMAT-DUMPER was originally posted in

April 1992 in a bilingual French-English version that nevertheless already served

the major TEX format cores: Plain, LATEX, dmS-TEX, and L%S-TEX. Along with
some current features, this article mentions numerous possible improvements.

To allow FORMAT-DUMPER to be fully multilingual withn the realm of European

languages that use a basically Latin alphabet, I propose use or adaptation

of Johannes Braams' babel, assimilating its style-independent features. Thus
FORMAT-DUMPER should become a useful adjunct to an updated babel. With this

in view, the article concludes with a carefully motivated discussion of the stellar

language switching mechanism of Babel using however modified nomenclature

based on the two-letter language codes recently introduced by Haralarnbous.

Introduction

Since the development of the TEX kernel was ter-

minated by Knuth in 1989, a number of important

problems have come into focus that must now be
solved within the somewhat arbitrary constraints of

TEX version 3. This article discusses one of them, the

compilation of non-English or multilingual formats

- restricting attention to the problems raised by
European languages that use a (possibly accented)

Latin alphabet.

Version 3 of TEX forbade introduction of new

hyphenation patterns during the normal operation

of the program TEX. More precisely, only the special

setup of TEX called INITEX is henceforth able to
interpret the command \pa t te rns . What is more,

although Knuth's documentation gives no warning,

even INITEX is unable to interpret \ pa t t e rns in case
a precompiled format has been loaded by INITEX.

It seems to me to be a perfectly reasonable and

worthy challenge to modify TEX so as to obviate

this limitation. However, I suspect that no such

modification of TEX will be in wide use before the

next century dawns. We should therefore endeavor
to live comfortably with TEX as Knuth left it.

[A note for THperts: One can of course wonder whether

t h s is a documentation bug, a program bug, or a

widespread implementation bug. I believe it is an

accidental documentation bug and an intentional program

limitation. As anecdotal evidence I point out that, on
page 453 in The THbook it is asserted that ".. . the

pattern dictionary is static: To change TEX'S current set

of hyphenation patterns, you must give an entirely new

set . . . ". In fact, this statement is a hangover from earlier

versions. Indeed, since version 3 appeared, \pa t terns

(while available) behaves cumulatively as \hyphenation

always has, and Knuth says as much in his TUGboat article

(Knuth, 1989) introducing version 3 of TEX. Bernd Raichle

<raichle@informati k .un i - s tu t tga r t . de> confirmed

on the basis of his reading of TH The Program that the

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Format Compilation Framework

limitation lies in the program. Further, Raichle points

out another mild inacc~rac)~ in the documentation of

\pa t terns : The statement in Appendix H of The T~Xbook

"All \pa t terns for all languages must be given before

a paragraph is typeset" is not strictly accurate. Only a

second linebreak pass (that for hyphenation) invalidates

\pa t terns . Indeed, like \dump, it causes the hlphenation

trie to be packed; and a second pass can be inhtbited, if

you set \pre to l erance to a high value.]

The upshot of this is that the precompiled

versions of standard formats such as Plain, mX,
AMS-TEX and FMS-TEX that one encounters cannot

be enhanced to handle a language whose hyphen-

ation patterns have not been installed at the time
of the original format compilation. Under TEX in

version 2 there was the possibility of flushing out

existing patterns at any moment and replacing them

with new; these patterns could be arranged to serve
two languages at once using a trick that Knuth
attributes to J. Hobby (see early versions of The
T~Xbook).

In practice, this presently means that the aver-

age TEX user has available only one or two languages

chosen by the TEX guru who compiled the formats
at the given TEX site. In continental Europe most
sites support English and (hopefully!) the national

language. Current TEX implementations usually

have space for a t h rd language, but - for lack

of hyphenation pattern capacity (t r i e s i ze, and
t r i e-op-si ze) - not more. There being usually
no unanimous choice for a third language among

a multitude of choices,l it is rarely present. But
most European users would greatly appreciate hav-

ing their TEX 'ready to go' in some other language or
languages they know. This situation is a deplorable

obstacle to the optimal use of TEX in languages

other than English, and to wide dissemination of

non-English documents in . t ex format once they
have been created.

There is another problem of which all scientists
and scholars are at least subliminally aware. In
a h g h proportion of scientific or scholarly biblio-

graphes, some titles are in 'foreign' languages. The

1 In Haralambous (1992), where two-letter language

codes were proposed, the existence of hyphenation

pattern files for the following is asserted: Croatian HR,

Czech CS, Danish DA, Dutch NL, Finnish F I , French FR,

German DE, Hungarian HU, Italian I T , Norwegian NO,

Portuguese PT, Romanian RO, Slovenian SL, Spanish SP,

Swedish SW, UK English UK, US English US, all these sup-

ported by babel (Braams, 1991); and moreover Catalan

CA, Estonian ES, Icelandic IS, Lithuanian LT, Polish PL

and Slovak SK.

current custom of using tiny fonts for such bib-

liographies and inhibiting hyphenation is a barely

tolerable stop-gap measure, and, for multicolumn

styles, it fails badly, causing incorrect linebreaks.

In the near future, authors will, I hope, make

it a habit to specify the languages using conven-

tional control sequences (Haralambous, 1992, 1993).
Those who employ a multicolumn style have strong

reason to demand the ability to quickly create a

format supporting the required foreign languages.

Publishers and others who care about the finer

points of typography should always demand t h s

ability. This need suggests that, in the near future,
big TEX implementations should routinely be able

to handle somewhat more than the half dozen or

so languages they do currently with t r i e-si ze=32

kilobytes. It also reveals a need for just 'basic'

services for many foreign languages.'

The Format-Dumper solution in outline. I feel the

best way to offer appropriately designed multilin-

gual formats with TEX 3 is to make the use of INITEX

for format compilation an easy matter that any

confirmed TEX user will happily undertake on h s

own. My view is not yet widely shared, probably

because INITEX is reputedly an unfriendly animal
of whch ordinary users should steer clear. More

widely accepted is the notion that just tomorrow

we all will have computers of infinite capacity and

infinite speed, equipped with precompiled univer-

sal formats containing all the language features we
need. I am skeptical of this optimism and suggest
that Knuth is another skeptic:

Suppose you were allowed to rewrite all the world's

literature; should you try to put i t all into the same
format? I doubt it. I tend to think such unification

is a dream that's not going to work.
TUGboat, vol13 (1 992), page 424.

I have constructed a provisional setup for

exploiting INITEX, called FOFNAT-DUMPER. It cur-

rently comes in two flavors "-cm" and "-ck",

serving Computer Modern and Cork norm font
encodings respectively. The master posting is on
matups. matups. f r, and mirror postings are avail-

able on faster CTAN servers (see these proceedings).

On the basis of this experience, which is just

beginning to branch out from its bilingual French-
English core, I hope to be able to suggest here
features for a general framework that should apply

to all European languages. It is surely too early to

2 Titles include a variety of punctuation, so punctuation

is clearly 'basic'.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Laurent Siebenmann

pick best possible choices, but it is high time to
evoke possibilities before a critical public.

I discuss FORMAT-DUMPER under the headings:

exploitation of standard format files rather
than ad hoc versions modified for the needs of
European languages;

assemblage of diverse tools in a directory rather
than in a monolithic file;

an interface based on programmed 'dialogs'
between INITEX and the user; and

a stellar protocol for switchng language con-
veniently in multilingual formats.

Interspersed among these are numerous com-
ments on problems raised by the use of active
characters in multilingual formats.

Even if FORMAT-DUMPER develops little or ulti-
mately disappears, I expect that some of the new
features I discuss will be adopted in fully developed
multilingual frameworks of the future.

Format-Dumper PIUS Babel. FORMAT-DUMPER is, I be-
lieve, the first system to address the problem of
systematizing format building under INITFX. On the
other hand, the first system for organizing multi-
lingual TEX is babel by Johannes Braams (Braams,
1991), a system one finds posted on many servers.
It provides adaptations of WX and Plain TEX to an
impressive list of European languages.

What is the relation of FORMAT-DUMPER to babel?
In its bilingual form FORMAT-DUMPER was independent
of babel because the French language features were
developed by Desarmenien and others before babel
was conceived. Much of the effort in the bilingual
version of FORMAT-DUMPER u7ent to serving French
users of AMS-TEX and L%S-TEX who were not
served by babel. FORMAT-DUMPER offers no services
that are specific to ETEX or to any format -
although there are a good many patches for the
major formats (notably AmS-TEX and L%S-TEX) in
order to permit character activation. Its emphasis
is on low-level thmgs: the installation of patterns,
the character activation just mentioned, font and
accent administration (this part called Caesar).

babel gives little help in managing INITEX, per-
haps because babel was designed before the new
strengths and limitations of TEX 3 were fully as-
similated. On the other hand, after four years of
development, babel covers an impressive spread of
languages, while FORMAT-DUMPER is just a prototype
that is clearly incomplete. babel's emphasis has
been on serving W X .

From the users' point of view in 1993, the sum
of both and much more are wanted, since so much
remains to be done for multilingual TEX.

Unfortunately, in a fully multilingual context,
t h s sum cannot remain disjoint. Certainly FORMAT-

DUMPER must exploit the vast compilation of macros
for the typography of many nations that babel has
built up. Further, the examination of language
switching that I make in the closing section of t h s
article leads me to conclude that babel's stellar
language switching mechanism is effective, natural,
and even capable of extension for worldwide use.
Indeed, I see no reasonable alternative to it. Con-
sequently, to become t ~ l y bilingual, FORMAT-DUMPER
must in some manner join forces with babel.

I believe most of the existing and proposed
features of FORMAT-DUMPER could be happily married
with most low-level features of babel. T h s seems
an attractive way to progress rapidly; in practice
this means that the features of babel not specific to
LATEX should be physically separated for ready use
by FORMAT-DUMPER. Perhaps the ETEX features will be
absorbed into version 3 of LATEX, (cf. Haralambous,
1993).

It is still quite unclear to me whether FORMAT-

DUMPER should dissolve into the babel system or
whether it should continue an independent life by
interfacing with a future version of babel.

Contributions from Haralambous, 1992. In a 1992
article that indicates directions for multilingual
developments centered on Norbert Schwartz' DC
fonts, Y. Haralambous proposed a succinct language
switching syntax \FR, \DE, \UK, \US, . . . that already
has an intriguing history. It is worth quoting the
relevant passage:

"The DC fonts and TEX 3.xx's language switching
features require new macros, which will also have
to be standardized.

"These macros are of two kinds:

" 1) macros for accessing accented or special char-
acters which are not available in the Computer
Modern fonts [. . . omitted]

" 2) macros for language switching (see 'Language-
s w i t c h g macros', below). Since it is now possible
to typeset a multilingual text where each language
uses its own hyphenation rules, its own fonts and
eventually its own direction of script, there must
be a standard (and simple) way to switch between
these languages.

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

A Format Compilation Framework

"So if, for example, you want to include German
or French words in your English text - 'Wagner's

Gotterdammerung was very appreciated by the 19th

century's bourgeoisie' - they will have to be hy-

phenated according to German and French rules.

To indicate this to TEX, macros have to be selected

whch are easy to remember, short, and universally

acceptable.

"For t h s , the standard has basically been taken

from the standard 2-letter ISO 639 language codes

as control sequence names [footnote on exceptions

omitted] (see 'Language-switching macros', [ornit-

tedl).

"The previous example is then written:

\US Wagner's

\DE {\it G\"otterd\"ammerung\/}

\US was very apprec ia ted

by t h e 19 th cen tu r y ' s

\FR {\it bourgeoi s i e}

I considered these recommendations very pos-

itive and felt that they deserved to guide the de-

velopment of language switching in FORMAT-DUMPER.

When presented orally at the EuroTEX conference

in Prague (September 1992), they raised mild ob-
jections from persons who felt that more explicit

names such as \f rench, \german, \ukengl i sh,

\usengl i sh, . . . would be more suitable. On the

other hand, the idea of using an IS0 standard for

these new lower-level macros had the great ad-
vantage of leaving undisturbed existing higher-level

macros like \f rench and \german. The use of cap-

itals (\FR not \ f r) further reduces the probability

of conflict with existing macros.

Recall that in becoming truly multilingual
FORMAT-DUMPER is faced with the awkward matter

of assimilating the low level language features from

the present babel that constitute a core of essential

services whch all users will want, while leaving aside

a plethora of optional high level features that belong

more to a style file than to a base format. I there-
fore set out to implement Haralambous' syntax in a

simplest possible f ashon. However, I quickly found

myself skating on thm ice; the difficulties described

in the closing section made me fall back on the
approach of babel.

In retrospect, one can perceive warning signs

even in the above quotation. Why was the syntax
not as follows?

\US Wagner ' s

{\DE\i t G\"otterd\"ammerung\/}

was v e r y apprec ia ted

by t h e 1 9 t h cen tu r y ' s

{\FR\i t bourgeois ie)

This syntax is more natural and and reduces the
uses of \US from two to one. For this to work, \US,

\FR and \DE must respect TEX grouping.

I surmise that Haralambous intended at the

time of publication (Haralambous, 1992), that \US,

etc., cause global changes which do not respect TEX'S

grouping. This turns out to be rather objectionable,

because such global changes are confusing to the

user in the presence of pre-existing language macros

that do respect grouping, beginning with those of

Desarmenien for French in the 1980's. Furthermore,
Knuth warns (The T~Xbook, p. 301) that use of both
local and global changes of the same entity can lead

to a slow poisoning of TEX'S grouping mechani~m.~

But t h s answer raises a second question.
Why would Haralambous have proposed \g loba l

changes? There are known approaches to im-

plementing language changes by using grouping

(and respecting grouping); they do work but they

encounter difficulties that I will explain below in

motivating the stellar protocol.

When the French translation (Haralambous,

1993) appeared in spring 1993, the macro syntax

proposal was omitted without comment. One

unfortunate consequence of t h s disappearance of

\US, \FR, \DE, etc. is that the related internal

macros I will propose for language switchng may
not be welcomed. On the other hand I would be
very pleased to contribute to rapid rehabilitation of

these handy control sequences in a form respecting

grouping.

The reconstruction of babel's language switch-

ing in the closing section offers somewhat more

than modernized notation. I feel that use of a
virtual language EC at the center of the star in

place of US is a step in the right direction - the

'communal' organization functions slightly better

than the 'parental' one. It also suggests a tree-like
structure for a worldwide system.

Use of Standard Formats

The use of unmodified standard versions of the . t e x

files defining standard formats is recognized to be

a feature vital for the stability, compactness and
clarity of any TEX setup. This discipline is accepted

by FORMAT-DUMPER; it does not mean that undesirable

3 At one point there was also a failure of babel's system

to respect grouping; see the \gdef on page 294 of

(Braams, 1991).

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Laurent Siebenmann

behavior of a format cannot be modified; but rather

that modifications will all be done by 'patch' files

external to the standard format files.

By dint of somewhat 'dirty' patching trickery

it becomes possible to use standard pl ai n . t ex

even when Cork norm fonts are used. The read-
only memories (=ROMs) that provide the low-level

routines for micro-computers usually provide a

protocol for patching; similarly it would be a good

thing if future versions of basic formats were built
to make patching less tricky.

Just a few kilobytes specific to FORMAT-DUMPER

are needed to compile a typical individual's desired
format. Thus it is possible, for example, for a
student in Australia with a microcomputer and a
modem of speed only 2400 baud to obtain, by f t p

_ from a European site, enough of FORMAT-DUMPER in
just a few minutes to automatically compile a good

French-English bilingual format with the help of
standard formats he already possesses.

Assemblage of Diverse Tools

as a Directory

Format files, language hyphenation files, patch files,

language files for typography and typing, and, fi-

nally, dumper files organizing the foregoing - these

are the main constituents of the FOR~IAT-DUMPER dir-

ectory. There is even a catch-all i ni texme. tex

dumper file which leads the user to all possible

format choices.

The patch files for French required to accom-

modate possibly active punctuation are non-trivial

(although compact) with 1993 AmS-TEX, and L%S-
TEX. I expect that optimal use of many other
languages will require some character activation,
but hopefully less than for French.

As FORMAT-DUMPER covers more languages and

formats, the number and total volume of files in the

FORMAT-DUMPER directory will become considerable.

On the other hand a single user wanting to build a

specific format needs only a few kilobytes of files.
How can one enable the user exploiting ftp to get

just what he needs? One interesting possibility
(among many) is to have a one-file 'scout' version

of FORMAT-DUMPER which produces not a format but
rather a 'roster' file, each line of which is of the
form

rnget (filename)

T h s roster will serve under most operating systems

to fetch automatically by ftp all the required files,
and not more.

The thorny issue of character activation. Without

this challenge, I might never have bothered to create

FORMAT-DUMPER! However, only the impact on the
design of FORMAT-DUMPER is of interest here.

Some TEXperts (myself included) feel that ac-

tivation of several characters, notably ; : ? ! (which
in French typography should yield subtle preceding

spacing) is the only way to make French typing

for TEX at once convenient, portable, and typo-
graphcally correct. French is perhaps the most

troublesome language in t h s regard, but others
have similar problems; for example, German TEX

formats often activate " for a variety of reasons.

Such activation unfortunately requires that formats
and macro packages be 'cleaned up'; FORMAT-DUMPER

does the necessary patchmg non-invasively. Hope-

fully, someday soon, the standard versions of major

formats will be 'clean' in this sense.

Other TEXperts, firmly believe that category

change is too troublesome to cope with - arguing

that there will always be macro packages that have

not been 'cleaned up'. They accept less convenient
typing, for example \; for semicolon in prose, or

they have to use a preprocessor. For them, an option
keeping ; : ? ! etc., inactive (i.e., of category 12 =

other) will be provided by FORMAT-DUMPER.

There is a residual category problem to be

investigated in multilingual TEXS. It is known to be
troublesome to switch category codes at times when

TEX is reading ahead during its macro expansion

process, for instance when it comes to expand
the middle of a big macro argument. T h s arises
because category code change cannot influence what

has already passed TEX'S lips. If the act of changing
category code is dangerous, then we should perhaps

not change category code in the process of changing

language! That has indeed always been a policy of
FORMAT-DUMPER.

Then what category choice is appropriate for an

English-French-German format? There is a practical
answer in this known case: have ; : ? ! active and

" inactive, but allow users of German to activate "
with due care when they wish - using a command

\ f l excat ! \ ac t iva t ew. An error warning is issued

by \ f 1 excat ! in the rare cases when category
switch is dangerous at that point.4 A language

change to French there could cause bad punctuation

(n'est-ce pas ?) - if one were to change category

4 Such dangerous points cannot be predicted on general

principles. But, it may be helpful to note that they are

more or less the points where 'verbatim' macros break

down.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Format Compilation Framework

code along with language. A 'danger warning' macro

for category change is perhaps a new idea; here is

a quick explanation. \ f l excat temporarily changes

the category of ! to 11 (letter) and then examines

the category of the following !; if it is not 11 an
alarm goes off. For more details see my July 1993

posting mentioning \ f l excat in the GUT TEX forum
archived on f tp.univ-rennes1.fr .

I am therefore optimistic that category activa-
tion and multilingual TEX formats can be mixed if

due care is taken. There always remains an 'all

inactive' option, but it would be sad to see TEX

become less friendly in an international context!

A User Interface Based on

Programmed 'Dialogs'

This means dialogs between INITEX and the user

orchestrated by a 'dumper' script. Mike Downes

has written a very valuable guide for building such

dialogs (Downes, 1991).

This interface makes the FORMAT-DUMPER system

nearly self-documenting and an incredible number
of distinct compiled formats becomes readily avail-

able to a diverse population of users. FORMAT-DUMPER

is a self-serve 'format supermarket'!

The user will be able to select languages at

wdl from a list of languages currently supported,

subject only to limitations of TEX capacity. For each
language the user will specify (from a short list

of options) which characters he will make active.

One of the options should always be none (i.e., no

new active characters)! The format being produced
will, for reasons explained above, have as active
characters all those characters designated as active

by the user for one or more of the languages

included. Long experience in having ; : ? ! active for

English in a French-English format encourages me

to believe that this modus vivendi will be acceptable.

There are many options it is wise to include

into a format dumped by FORMAT-DUMPER rather than

\ input them repeatedly later. The math fonts

are one of my steady personal choices. It will be

possible and desirable to put more and more good
things into a compiled format, in order to to fit the

users special needs.

To prevent t h s wealth from bewildering the
user (and those who have to handle his or her . tex

files at a later date) devices are needed to recall

the salient features of the format built and permit

an equivalent format to be created in any other
environment. Even the casual user will want this

under MSDOS operating systems, where the format

name is limited to 8 + 3 letters and hence inadequate

as a source of information.

Here are two devices for format identifica-

tion. By using the \everyjob primitive, a tele-

graphic summary of the format can be placed

on the log at each launch. Further informa-

tion should be provided by an optional command
\ShowFormatInfo. This should indicate all the

essential choices made in creating the format. This

information should be formatted as . t ex comments

suitable to become part of the header of any . t ex
file. This should assure world-wide portability of
the . t ex files for any format produced.

Format compilation, for a book say, is a process

that I tend to repeat often until just the right recipe

is found: just the right fonts and macros, no more.

There will be a way to have FORMAT-DUMPER learn to

anticipate what one wants, so that most multiple
choices can be bypassed as the default choice, i.e.,
by simply striking the return key. Here is the

idea: FORMAT-DUMPER should learn to make the right
choice the 'default' choice. For this, one can have

FORMAT-DUMPER make the default choice be the choice
made on the previous dumper run; choices would

therefore be written to an auxiliary file. (If the last

run is not recent, as measured by \today, one might

reasonably revert to 'default defaults'.)

Using compiled formats to good effect. At a

later stage, it saves much time to build upon

formats produced by FOFWAT-DUMPER, say fe-LaTeX,
to obtain a more temporary format that attacks your
typesetting almost instantly. If your (LA)TEX often

spends many seconds chewing through macros

before starting genuine typesetting, you have some

tricks to learn.

They will be illustrated by an example. Given a

. t ex file for (say) fe-LaTeX, give the name x . t ex

to the segment of up to (and possibly including)

\begi n(document1, and let y. t ex be the rest. Then

add \dump to the end of x . t ex and compile with

INITEX, normally using the syntax

i n i t e x &fe-LaTeX x (1)

A format is dumped; let it be called x-LaTeX. T h s
new format is the one that then attacks y . tex

instantly, using VIRTEX with the syntax

v i r t e x &x-LaTeX y (2)

On a unix system, one can alias t h s ephemeral

but oft repeated command as (say) ty; further one
might use 'piping' to make t y also preview the

result.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Laurent Siebenmam

Regrettably, a number of routine but system

dependent technicalities may necessitate help from

your system manager. The most frustrating is
perhaps difficulty in accessing a freshly dumped
format. I recommend wider user education con-
cerning the way TEX accesses the various files it

needs.

It is a praiseworthy initiative of Textures on

Macintosh computers to incorporate into WRTEX all

the functionality of INITEX. This means that Textures

users are less intimidated by format dumping.

Instead of the command (I) , they have Textures
compose x . t ex using format fe-LaTeX; and instead

of (2), they have Textures compose y . t ex using
X - L ~ T ~ X . ~

Switching Language

The stellar protocol described here is morally that of
babel, but I have permitted myself liberal changes of

detail in the hope of clarifying ideas and influencing

future versions of babel.

The proposed center of the star is not English

but rather a virtual language whose two-letter tag

should be EC (for European Community); it would
have neither hyphenation patterns nor exceptions.

(More details on malung EC a convenient institution
come later.)

5 There was an unfortunate bug in versions 1.4 and 1.5

of Textures that virtually forced one to quit Textures
before using a (re)compiled format. The long life

of thls bug, now fixed by version 1.6, confirms my

impression that even in the exceptionally good Textures
environment, format compilation has been underused!

For each language, say French, a number

of language-change control sequences should be
defined.

\FR for a middle-level language change, as

proposed by Haralambous (1992).

\EC@FR and \FR@EC, macros which are of a
lower level than (a).

\l@FR is TEX hyphenation system number for
FR. \l anguage=\l@FR switches to it. Ths is
the lowest leveL6

The shape of t h s protocol is stellar since all
languages are explicitly related to the virtual central

language EC as the figure above indicates and not
directly among themselves.

To motivate this design we now examine the

nature of the switchmg problem and the weaknesses

of simpler designs.

Unlimited complexity of language. The macro \FR

must be more complicated than one first thnks
because its action in general should depend on the

current language at the time it is called. Indeed,
special features for the current language have to
be neutralized. The features I have in mind are

chefly the behavior of punctuation and spacing

that are peculiar to the current language, but they

may include typing conventions and there are many
additional bits and pieces. (The hyphenation pat-
terns and exceptions themselves do not pose any

problem, since by calling new ones we automatically
put aside the old.)

These bits and pieces are sufficiently import-
ant that they cannot be ignored, and sufficiently

numerous that one does not have time to reset all

the features and parameters that some other un-
specified language might conceivably have altered.

There is an attempt in Haralambous (1992) to put

an a priori bound on the things that that will change

under language switching; I feel that t h s is imprac-
tical, and fortunately we will find it unnecessary.

Let us look at some bits and pieces.

The Czechs have a rare but logical and unam-

biguous convention for splitting hyphenated words

at line ends: the hyphen is programmed to survive
at the beginning of the following line. There i s

the question whether the parts of a word spelled

6 (a) babel's \sel ectlanguage (f rancai s} corres-

ponds roughly to \FR. In fact the syntax \sel e c t l an-

guage {FR} should be retained in programming.
(b) babel's \ext rasf rancais corresponds roughly to

\EC@FR, and \noextrasf rancai s to \FR@EC.

(c) babel's \1@f rancai s corresponds to \l@FR.

218 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Format Compilation Framework

with a hyphen should be subject to hyphenation
at linebreaks. French spacing around punctuation
involves \f renchspaci ng whch suppresses extra
spacing after punctuation (conventional in English)
and adds peculiar extra spacing before the four
punctuation points ; : ? ! . Another detail is the pos-
itive \I ccode the French assign to the apostrophe
(English gives it \I ccode=O). I expect the list of
such language dependent features will never be
complete.

Accent style becomes a nightmare for TEX. With
CM fonts, French users usually prefer to suppress
accents on capital letters, although with a suitably
designed font family, French typography recom-
mends their use. Incidentally, suppression can be
gracefully handled by adding a few hundred octets
of macros to the accent administration package
'Caesar' currently used by FORMAT-DUMPER.

Far more vexing for multilingual format build-
ing are disagreements in accent positioning between,
for example, French and Czech (ZlatuSka, 1991);
thus I permit a digression here. At present this
disagreement seems to require that different font
systems be used for French and Czech, at consid-
erable cost - simply by reason of a small number
of misplaced accents. Although this is wasteful,
let it be conceded that the setup can be gracefully
handled by the NFSS (New Font Selection System) of
Mittelbach and Schopf. Indeed, 'language' can be
one more 'property' analogous to 'shape' or 'size'.
This solid but weighty solution is recommended by
Haralambous (1993) and is materially supported by
NFSS version 2.

I mention that there may perhaps be an efficient
solution based on the stellar language switchmg we
are studying, and the notion of a SPECIAL within
a character description in a virtual font.' Consider
the task of enhancing a future virtual version of the
DC fonts of N. Schwartz to allow the positioning
of accents favored by Czech typography (ZlatuSka,
1991). Each language change into or out of Czech
should be marked in the . dvi file by a TEX \speci a1

command. For implicit language switches induced
by TEX'S grouping, the \aftergroup primitive helps
to insert the \speci a1 command. Nevertheless,
the macros \CS@EC and \EC@CS for Czech are the
only macros in the switching scheme that need
to be enhanced. The virtual DC fonts would

7 There is another approach via an enhancement of

the \ charsubde f addition to TEX by Mike Ferguson

< m i keei nrs - te lecom. uquebec. ca>, but Mike warns

me it is not easy to implement.

then be enhanced by including SPECIALS within
the MAP description of each accented character
altered for Czech, indicating the modified accent
positioning. T h s would, in turn, require that drivers
learn to interpret these specials in the intended
order. (These SPECIALS and their modifications
are ignored by current drivers.) By t h s method,
single virtual font can become a sheaf of virtual
fonts indexed by a parameter or parameters. In this
context, the parameters correspond to language
related variations, and a language change typically
causes tiny alterations on a few font characters.
This solution is a 'pipe dream' - but hopefully
one with real potentiaL8 (I believe it worthwhile
to dream up SPECIAL extensions of virtual font
mechanisms, as that will, in the long run, stimulate
the improvement of drivers and driver standards.)

I have argued (with digressions) that there is a
limitless number of things \FR would have to do if
it were not known what language we are switching
out of. Presently, I will observe that it is easy to
have TEX keep track of the current language and that
an efficient way to switch fonts is obtained by going
between any two languages via the central language
EC using the macros (b). But, before plunging
into more detail, we really must be convinced that
simpler pre-existing schemes are inadequate.

Language switching based on grouping. Many
readers will surely have thought of a simpler lan-
guage switching scheme based on grouping. Sup-
pose we begin each typescript always in a preferred
'base' language, say US (where TEX began). Then, if
we define \FR to switch from the base language to
FR and similarly for \DA and \CS, the syntax

{\FR (French text) 1
{\DA (Danish text))

{\CS (Czech text))

will provide correct language switchmg. Alternat-
ively, the LAT$ 'environment' syntax:

\begi n{FR)(French text)\end{FR}
\begi n{DA) (Danish text)\end{DA)

\begi nCCS}(Czech text)\end{CS}

could accomplish the same. In essence, why not
rely on the powerful grouping mechanism of TEX
to get us back to the base language at the end
of a group, thereby economizing half the macros
proposed in (c)? My answer is that this well-known
approach is indeed valid but often inadequate!

8 Character shapes can change arbitrarily; the main

restriction is that the font metric data cannot change.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 219

Laurent Siebenmann

It is inadequate when the current language has

been declared at a higher grouping level than at

the spot where we propose to switch language;

indeed closing groups before switching - in order
to return to the base language - is not an option

there, since it has, in general, disastrous side effects.

(In addition, one would not even know how many
groups to close!) For example, the desirable syntax

\FR (French text)

\begi n{anyenvi ronment l

(French text)

{\DA(Danish tex t) }

(French text)

\end{anyenv i ronment }

(French text)

would be invalid, and clumsy to fuc. Such clum-

siness is unacceptable in many applications, such

as literary criticism, history, art, travel, music, etc.,

where many quick language switches are required.

Note that the above example would pose no

problem if the notion of language were encom-

passed by a fixed finite number of features such

as hyphenation rules, fonts, and direction of script.

Indeed it would suffice to have \FR, \DA, etc.,
each adjust all of these features; the change to

Danish would automatically undo all the features

of French. Unfortunately, this 'Cartesian' view of
language seems inadequate, as was explained above.

Functioning of the stellar protocol. I hope the

above analysis of alternatives will convince readers
to take the stellar protocol seriously. Here are some

details to explain how it provides valid language

change, say in this last example.

At any moment, a reserved register \ l @ t o k s

contains the tag of the current language, say FR,

and there exists a macro \FR@EC pre-defined to

cause reversion from FR conventions to the EC

conventions. Its first duty is of course to change

the value of \ language from \1 @FR to \1 @EC. Its

multiple other duties are to dismount all the special
features that \EC@FR will have introduced at an

earlier time.

The action of \DA is then double: First, it looks

at the current language register \ l @ t o k s and uses

what it finds (FR say) to revert to EC by \FR@EC.

Second, it applies another pre-programmed macro

\EC@DA to pass from EC to Danish, and replaces F R

by DA in the current language register.

Thus, for each language (FR say), the crucial

problem is to define two macros \EC@FR and \FR@EC

to introduce and suppress national features.

Eurocentrism. The shape of this solution recalls the
twelve-star circle on the European flag. It installs

eurocentrism - since change from one national

language to another passes through the formal

center EC.

What should be the features of the artificial

language EC? One wants it to be a sort of center
of gravity to which one can easily revert. Thus,

I would give it the consensus \ l ccodes used by
Ferguson in h s MLTEX. Null hyphenation patterns

let EC serve in a pinch in lieu of a missing language,

say \DA, at the cost of introducing soft hyphens by
hand; \DA should then be \ l e t equal to \EC, whch

prevents incorrect hyphenation for this language

(and no more). Incidentally, \EC is defined like \DA,

but of course \EC@EC does nothing.

For the rest, Knuth's features for English prob-

ably make a reasonable choice; then at least we all
can remember what EC means!

Adaptability and extensibility of the switching
scheme. For the purposes of FORMAT-DUMPER, the

language change macros \FR, \US, etc., should
initially be low to middle level. But, since various

complex styles may be loaded later, there must be
possibilities for enhancement of the features for

any language.

Permanent enhancement is straightforward. On

the other hand, a macro package might want to
provide a macro \myf renchex t ras to conveniently

add French language features that d l go away

when we next leave French. This suggests a

possible enhancement to the language change pro-

tocol described, which we now explain for the
switch from French to Danish. \myf r e n c h e x t r a s

should both introduce the extra features and add

to a reserved token sequence \@ECtoksg an ac-

tion \@undomyf renchex t ras . Then, when we leave

French by \DA, the enhanced mechanism would first

9 babel's \or i g i nalTeX corresponds roughly to \@ECtoks.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Format Compilation Framework

make \the\@ECtoks act, then empty \@ECtoks, and future versions of babel and FORMAT-DUMPER collab-
finally execute (as normally) \FR@EC\EC@DA. There orate - in order to provide convenient compilation
are many possible variations to explore. Even the of multilingual formats using INITEX.
naive use of grouping will often produce adequate

results. I am pleased to thank Johannes Braams, Klaus

One could allow more than one manifestation of
Lagally, Frank Mittelbach, Bernd Raichle, and the

referee for helpful comments on the preliminary
a given language, say basic French FRb as presently

version of this article.
supported by FORMAT-DUMPER, or classical French FRc

as supported by f renc h . s t y of B. Gaulle (available
on f t p .univ- rennes l . f r) , or again FRx a French Bibliography
publisher's distinctive typography. A new manifest-

ation of a language can clearly be added 'on the fly' Braams, Johannes. "babel, a multilingual style-

by a user (without dumping using FORMAT-DUMPER), option system for use with WX's standard docu-

so long as the hyphenation scheme coincides with ment styles". TUGboat, 12(2), pp. 291-301, 1991;

that of a manifestation already installed. It seems the babel system is available on the major TEX

unlikely that rapid switching between such variants archives.

of French would be of anv interest; hence any one Dowries, Michael. "Dialog with T E ~ . TUGboat, 12(4),

could appropriate the standard macro \FR.

The opposite is true where dialects of a lan-

guage are concerned, since conversations (say in a

play) would require rapid switching. The 'closeness'
of the dialects of one language could be most effi-

ciently exploited using a treelike rather than stellar

protocol (below).

Incidentally, to facilitate the above extensions,

TEX should maintain a list in a standardized form

of names of the installed hyphenation systems and

another of the installed languages (with switching
macros).1°

A world-wide system. Naturally, one dreams of

a worldwide system with the virtual language U N

(for United Nations) at its center. Its natural

shape would, I imagine, be treelike rather than

stellar; EC might be one of several internal nodes
corresponding to a language grouping. Two points

of the tree are always joined by a unique shortest

path (usually shorter than the one passing through

UN) and this may permit a natural and efficient

generalization of the stellar switching scheme that
has been sketched above.

Such are the simple but powerful ideas under-

lying the language switchmg in babel. It seems clear

that there are no insuperable obstacles to having

lOBeware that the correspondence of the two lists need

not be exactly one-to-one. There may be different

hyphenation systems for the same language (commonly

minimal and maximal). And there may be more

than one language manifestation/dialect using the

same hyphenation system. In babel, an ephemeral
external file 1 anguage . dat bears t h s information at

format compilation time; somethng more robust and

accessible i s called for - see (Taupin, 1993).

pp. 502-509, 1991.

Haralambous, Yannis. "TEX Conventions Concerning

Languages". TEX and TUG News, 1(4), pp. 3-10; this

article with its useful tables is available in digital
. t ex form on f t p . uni - s t u t t g a r t . de.

Haralambous, Yannis, "TEX Conventions concernant

les polices DC et les langues". Cahiers GUTenberg

15, pp. 53-61, 1993.

Knuth, Donald. "The New Versions of TEX and

METAFONT". TUGboat, 10(3), pp. 325-328, 1989.

Taupin, Daniel. "Commentaires sur la portabilite de

TEX". Cahers ~ u ~ e n b e r g , 15, pp. 3-31, 1993.

ZlatuSka, Jifi. "Automatic generation of virtual fonts

with accented letters for TEY. Cahers GUTenberg,

10-11, pp. 57-68, 1991.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Bibliography Prettyprinting and Syntax Checlung

Nelson H. F. Beebe
Center for Scientific Computing
Department of Mathematics
University of Utah
Salt Lake City, UT 84112

USA
Tel: +1 801 581 5254

FAX: +1 801 581 4148

Internet: beebeemath. u tah . edu

Abstract

This paper describes three significant software tools for BIBTEX support. The first,
b i b c l ean, is a prettyprinter, syntax checker, and lexical analyzer for BBTEX files.
The second is b i b l ex, a lexical analyzer capable of tokenizing a BETEX file. The
third is b i bparse, a parser that analyzes a lexical token stream from b i b c l ean

or b i b l ex.

The current BBTEX implementation (0.99) is based on a vague and ambiguous
grammar; that situation must be remedied in the 1.0 version under development.
Rigorous lexical analyzer and parser grammars are presented in literate program-
ming style, and implemented as b i b l ex and b i bparse using modern software
tools to automatically generate the programs from the grammars. b i b c l ean also
implements these grammars, but with hand-coded parsers that permit it to apply
heuristics for better error detection and recovery.

Extensions of the current BBTEX for comments, file inclusion, a Per i od i ca l

bibliography entry, and ISSN and ISBN entry fields, are proposed and supported
in these tools.

The impact of much larger character sets is treated, and grammatical limit-
ations are introduced to ensure that an international portability nightmare does
not accompany the move to these character sets.

b i b c l ean is extensively customizable, with system-wide and user-specific ini-
tialization files, and run-time-definable patterns for checking BIBT@ value strings.
A customized pattern-matching language is provided for t h s purpose. b i b c l ean

can also be compiled to use regular-expression patterns, or none at all.
All code is written in the C programming language, and has been tested for

portability with more than 40 C and C++ compilers on several major operating
systems. The distribution includes a large suite of torture tests to check new im-
plementations. It is not necessary for installation to have the lexical analyzer and
parser generator tools that process the grammars; their output code is included
in the distribution.

The complete paper is too long for the TUG'93 Conference Proceedings issue;
it will instead appear in the next issue of TUGboar.

TUGboar, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A TEX User's Guide to ISO's Document Style Semantics and Specification

Language (DSSSL)

Martin Bryan
The SGML Centre
29 Oldbury Orchard,
Gloucestershire, U.K.

Internet: mtbryanechel tenham-he. ac. uk

Abstract

The importance of capturing structure information in documents that are likely
to be re-used is increasingly being recognized. In both academic and commercial
circles the role of ISO's Standard Generalized Markup Language (SGML) in captur-
ing and controlling document structure is becoming more widely acknowledged.

While TEX itself does not utilize document structure information, many of its
macro facilities, such as LATEX, provide some, albeit high-level, structure control.
@T#3 seeks to increase the level of structure recognition by adding recognition of
attributes within macro calls to allow more than one interpretation of a structure-
controlling markup tag.

ISO's approach to the problem of linlung document structure to document
formatting engines such as provided by T# is to develop a language that can
be used to add suitable sets of formatting properties to SGML-coded and other
structured documents. The Document Style Semantics and Specification Lan-
guage (DSSSL) has two main components: (1) a General Language Transformation
Process (GLTP) that can take a document with a predefined input tree and trans-
form that tree into the form required for subsequent processing, and (2) a set of
Semantic Specific Processes (SSPs) that specify how specific operations, such as
document formatting, shall be specified at the input of the formatter.

T h s paper explains these two processes, and shows how they can be used in
conjunction with TEX.

Introduction

The advantages of adopting a structured approach
to document markup have been known to TEX users
for many years. Most of the macro languages de-
veloped for use with TEX use the names of the struc-
tural elements that make up a document to identify
the way in w h c h the document is to be presented to
users. Notice that I did not use the word 'formatted'
here. Today TEX is used to present documents to
users on screen almost as often as it is used to pre-
pare documents for printing, and this fact has to be
a key factor in the development of any new language
for describing how to present text. The characterist-
ics of screens differ from those of paper, so the rules
used for presenting information on screens have to
differ from those used to present the same inform-
ation on paper.

Within the Open Systems Interconnection (OSI)
program of standards development at the Interna-

tional Organization for Standardization (ISO), there
are two main standards for the creation and present-
ation of structured text. For data whose structure
is controlled by the presentation process the Open
(originally Office) Document Archtecture (ODA) can
be used to define the logical structure of typical
office-related documents. For more general pur-
pose applications, the Standard Generalized Markup
Language (SGML) can be used to describe the lo-
gical structure of captured data, and the Standard
Page Description Language (SPDL) can be used to de-
scribe the formatted result. ISO's Document Style Se-
mantics and Specification Language (DSSSL), whch
acts as the llnk between these two forms, has been
designed to allow systems to interchange informa-
tion that can be used to convert logically structured
SGML files into physically structured, presentable,
SPDL files, or into the form required for processing
by existing text formatters, such as TEX.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Martin Bryan

About DSSSL

As TEX users you will understand that there is a
difference between the way in whch information is

presented on a page or screen and the way in whch

it is created and used. One of the key problems
that has faced the SGML community is that the lo-

gical structure that is needed to guide users during
data capture or data retrieval is not necessarily the

best structure for text formatting. If users are con-

strained to a model that reflects the way in whch the

document is to be formatted they are likely to object

to the need to capture data in a structured format
(and, given human nature, are likely to go to the op-

posite extreme and insist on creating totally unstruc-

tured, "What You See Is All You'll Get" (WYSIAYG),
documents).

What is needed is a coherent means of describ-

ing the relationship between elements used to navig-
ate through an information set and the objects used

to present specific parts of the information to users.

The transformation that is required to achieve this

forms the first part of the DSSSL standard, whch

defines a General Language Transformation Process
(GLTP) that can take objects in an SGML-encoded

data tree and associate them with objects that can

be used by a formatter. This transformation uses

an advanced, SGML-knowledgeable, query language
to identify the relationships between objects mak-

ing up the source document and those malung up

the output of the transformation process. The re-

lationshp between SGML elements, their attributes,
the file storage entities that contain them and the

entities and elements they contain can all be identi-

fied and mapped, as appropriate, for output. T h s
means that attributes in the source document can

create new elements or entities in the output docu-

ment, and that elements or storage entities can be

used to control attribute (property) setting in the

structure passed to the text formatter.
The DSSSL GLTP performs a role that TEX does

not address. It will allow you to take an SGML-coded
document and turn it into a format that is suit-

able for processing by a known set of TEX macros.

By allowing, for example, structurally related cross-

references (e.g., see Chapter 4) to be resolved prior

to formatting, with the appropriate formatting prop-

erties being generated in response to the type of ref-

erence, DSSSL should be able to reduce the amount
of work that needs to be done during formatting sig-
nificantly.

The DSSSL document formatting Semantic Spe-
cific Process (SSP) will:

provide a set of formatting properties that have

internationally acceptable formal definitions of

their meaning,

provide a model for describing areas into whch

data is to be positioned or flowed, and

provide a method for describing whch area, or
type of area, each object in the structured doc-

ument should be placed into.

The first stage of the document formatting SSP

consists of describing the relationshps between the

various areas that make up a page, and the proper-

ties of each area, in an area definition. The second
stage consists of describing how the elements that

make up the GLTP output tree are to be 'flowed' into

the areas described in the area definition. Figure 1
shows the relationship between these processes.

Rather than invent a completely new language

to define the relationships between objects in the

various transformations, DSSSL has been developed
as an extension to IEEE's Scheme variant of LISP, pro-

duced by MIT. The adoption of this advanced AI lan-

guage offers a number of important advantages. In
particular LISP is an object-oriented language that is

ideally suited to querying data structures and trees.

Any location in a document tree can be described

in Scheme as a list of the objects that make up the

tree, e.g.:

(do,cument body (chapter 4)

(sec t i on 5) (subsect ion 2) (para 3)) .

Scheme provides a compact, but clearly defined, set
of functions that can be used to manipulate and

transform object lists. DSSSL provides the addi-

tional functions needed to describe the relationships

between Scheme processes and SGML constructs,
e.g.: (query - t ree " r oo t * ' (EL "p").

Another key consideration in the choice of

Scheme was the simplicity of its powerful recursive

processing features. Formatting is largely a recurs-

ive process, and Scheme can simplify the expression
of recursive processes.

Whle the exact form of the Scheme constructs

is still under discussion the following examples will

give you some idea of the form the final language

will probably take. A typical area definition for the
running head of a left-hand page might be:

(area-def l e f t - h e a d e r

' (rep g lyph)
(s e t - p r o p e r t i es

(a rea- type l i n e)

(o r i g i n (p o i n t 7 p i 0 .5 in))

(x - e x t e n t 39pi)

(y - e x t e n t l p i)

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

TEX Users Guide to DSSSL

----+ +-------------+ +--- - - -+

I I I
V V A

I I I
+--------------------- +
I S e m a n t i c S p e c i f i c I
I P r o c e s s I
I (SSP) I

Figure 1: The Modules of DSSSL.

(p lacement -pa th -s ta r t

(p o i n t 0 b a s e l i n e - o f f s e t))

(placement-path-end

(poi n t 39pi base1 i n e - o f f s e t))

(a1 i gn cen t re)

(word-spaces (18 1 5 18))

; t h e r e a r e 54 u n i t s t o 1 em

(l e t t e r s p a c e (6 6 6))

(hyphenat ion-a1 lowed #f)
(font-name "/Monotype/Hel v e t i ca/Medi um")

(po i n t - s i ze 10pt)

(s e t - w i d t h 10pt)

((case usc)

; Uppercase f o r c a p i t a l s

- s m a l l caps f o r lowercase

1 1
while a typical flow specification could have the
form:

((t i t l e t i t l e - p)

((w i d e - t e x t s i n g l e -co l umn-text -area)

(s e t - p r o p e r t i es

(prespace li n)

(postspace 3p i)

(font -name head ing- fon t)

(f o n t - s i ze 36pt)

(p a t h - s e p a r a t i on 42pt)

(a1 i gn cen t re)

(l a s t - l i n e cen t re)

(hyphenat ion-a1 lowed # f)

(cond (count

(c h i l d r e n (1 i ne t i t l e t i t l e-p))

< 1)
(genera ted- tex t

"Unnamed Repor t ")

1) 1
(l e f t - h e a d e r l e f t - p a g e)

In this example the title element on the title

page flows into both an area for holding wide text
lines in a single colum text area and into the run-

ning header for left-hand pages. For the title page

the formatting properties are applied as part of the

flow definition because, in this case, the area being

used to contain the text is a general-purpose one
whose default typesetting properties are not suit-

able for the type of text about to be poured into it.

DSSSL's ability to qualify the way in which areas are

formatted dependent on the contents that are flowed

into it provide a type of functionality provided by
few formatters. Note particularly the inclusion of a

standard Scheme condition expression that acts as

a trap for cases where no data has been entered into

the title field of the report. In this case the left-hand

running head will be blank, but the title page will at

least have a heading (Unnamed Report).
One of the interesting points of discussion

among DSSSL developers is the relationship between

the various sets of properties that can be used to
control processing. The way in which text should be

presented to users can be defined as:

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 h u a l Meeting

Martin Bryan

using attributes defined in the source instance;

using attributes defined as part of the output
GLTP ;

through SSP-defined properties assigned to
areas in the area defmtion; or

through SSP-defined properties attached to the
flow specification.

Whch of these should take precedence, and in
what order should they be applied? Personally I feel
that attributes in the source, or those created as
part of the transformation process, should be able to
override properties defined as part of an area defin-
ition, but should they also override any properties
specified whle defining how output objects should
be flowed into areas? There seems to be no clear-
cut answer to t h s dilemma, and it looks as if the
DSSSL team will need to define a precedence order
as part of the standard based on gut feeling, unless
someone can come up with a convincing case for a
particular approach. (Any offers?)

How Can DSSSL Be Used in Conjunction
with TEX?

The DSSSL GLTP process can be used to trans-
form SGML-encoded files into forms suitable for pro-
cessing by existing TEX macro sets, such as those
provided by Q X . In such cases there is little need
to associate area definitions with the GLTP trans-
formation as this is the function of the TEX macros.
However, in the longer term, it would be advantage-
ous if we could map the way in whch DSSSL de-
scribes areas, and the properties used to describe
the required output, directly into TEX. Hopefully t h s
Mrlll not prove too difficult a task, especially given the
transformational power provided by Scheme.

The work currently being done on Q X 3 should
make it easier to use TEX as the output process of
the DSSSL process. As I understand it, one of the
aims of LATEX3 is to allow attributes/properties to be
used to control the way in which macros process
the associated text. If we can find a way to map
the properties defined in DSSSL to equivalent func-
tions in TEX it should be possible to provide simple
transformation algorithms that will turn the output
of the DSSSL GLTP process into appropriate LATEX3
macro calls. While we are still a number of years
from being able to do this, now is the time to plan
how this should be achieved, before DSSSL or LATEX3
are completed. For t h s reason the DSSSL team is
keeping a close eye on what is happening in the TEX
world.

As DSSSL is designed to be used with a wide
range of formatters, including those based on TEX, it

is important that the way in which DSSSL properties
can be interpreted in a TEX environment be carefully
studied prior to publication of the final standard.
For this reason it is important that the TEX com-
munity track the changes that will be published in
the second draft of the international standard when
it is published later this year.

226 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

TeX and SGML: A Recipe for Disaster?

Peter Flynn
University College
Cork, Ireland
Internet: p f l ynnecur i a . ucc. i e

Abstract

The relationshp between T$ and SGML (Standard Generalised Markup Language,
IS0 8879) has often been uneasy, with adherents to one system or the other dis-
playing symptoms remininscent of the religious wars popular between devotees
of T$ and of word-processors.

SGML and T$ can in fact coexist successfully, provided features of one sys-
tem are not expected of the other. T h s paper presents a pilot program to test
one method of acheving such a cohabitation.

Introduction

For many years, SGML and its relationslup with T$
has been a frequent topic of presentation and discus-
sion. Network users who read the TEXhax digest and
the Usenet newsgroup comp. t e x t . t e x will be fa-
miliar with the sometimes extensive cross-postings
to the sgml-1 mailing list and the comp. t e x t . sgml

newsgroup. Two extremes are apparent in the mis-
understandings: that SGML is some kind of desktop
publishing (DTP) system; and that T$ or are exclus-
ively for structured documentation. Such problems
highlight the lack of information about the design of
either system, as available to the novice, but also re-
veal the capabilities and limitations of both systems.

In fact, there is a parlous level of understanding
about both T$ and SGML even in the printing and
publishng industry, where one would expect a more
sophisticated degree of understanding: in this au-
thor's personal hearing, so-called experts from ma-
jor publishng houses have criticised TEXs 'lack of
fonts' and SGML's 'lack of font control'.

It is perhaps worth emphasising the difference
at this stage, for the non-expert, in that T$ is a
typographic system principally for the creation of
beautiful books (Knuth, 1984) (but also other printed
documents: it is intended for putting marks on pa-
per) and SGML (Goldfarb, 1990) is the international
standard for describing the structure of documents
(intended for document storage and control, whch
could, of course, include typesetting as one of many
possibilities).

Publishing: the view from outside

A recent article (Beard, 1993) quotes John Watson,
London Editorial Director of Springer-Verlag:

We can use JAT$ files, which many of our au-
thors of books or papers with complex maths
find convenient, but if they need serious edit-
ing, it's so expensive we have to mark up
hardcopy and send it back to the author to
make the changes. T$ and bT$ are only
a stop-gap. SGML hasn't really reached our
authors yet. What's really needed is a WYSI-
WYG system that's as universal as T$, prefer-
ably in the public domain so all our authors
and freelances can use it, and easy for sub-
ject specialists to edit on screen. And of
course the output should be Linotron- as well
as Postscript-compatible. (Emphasis added.)

This view of the world expresses an attitude com-
mon in the publishing field, that editing T$ is dif-
ficult, that the nature of T$ is impermanent, and
that the only goal of all writing is for it to be prin-
ted on paper. Whde SGML has indeed 'not reached
our authors yet', that is hardly the fault of SGML,
when editing systems for handling SGML are readily
available for most platforms.

The speaker's desires are very laudable,
however much one may agree or disagree with the
implied benefits of WYSIWYG systems, in that the
software should be universal, easy to use and in the
public domain. The speaker's complaints, however,
deserve further analysis.

Editing. The speaker seems here to be confusing
two aspects of the techmcal editorial process: math-
ematics editing and copy editing (editing text for
production), both of whch have to date been per-
ceived as matters for the specialist, as those who use
T$ in a professional pre-production capacity with
publishers as clients have long recognised.

TCrGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Peter Flynn

In the confusion, sight has been lost of the fact

that editing a file of T$ source code need be no more

of a problem than editing any other kind of file, if an

adequate macro structure is provided, and it is prob-

ably less of a problem the better structured the text
is. If the publisher's authors are unable or unwill-
ing to adhere to the very straightforward guidelines

put out by most publishers, it would appear a little

ingenuous to blame T$ for their deficiencies.

There are large numbers of literate and numer-

ate graduates with sometimes extensive T$ exper-
ience: if (as seems to be implied) editing may now

be entrusted to authors, a publisher has little ex-

cuse for not employing some of these graduates on
non-specialist editorial work. It is, however, as un-

nerving to hear publishers so anxious to encourage

authors to undertake pre-press editing as it would

be to hear them encourage non-mathematicians to
undertake mathematical editing: it is precisely be-

cause the authors do not normally possess the spe-

cialist knowledge to do this that the work is handled

by in-house or contract editors. The mechanics
of editing a T$ document are not especially diffi-

cult, given proficiently-written macros, and there are

some crafty editor programs around to assist t h s
task. Training courses in elementary T$ abound,
so if a publisher is serious about cutting pre-press

costs by using T$, the way lies open.

The typographic skll resides in implementing
the layout: taking the typographer's specifications
and turning them into T$ macros to do the job,

ideally leaving the author and subsequent editor

with as little trouble as possible to get in the waj7
of the creative spirit. The implementation of design

is, however, increasingly being left to the author,

who may understandably resent having to undertake
what is usually seen as a task for the publisher, and

who may be ill-equipped to perform this task (Fy-

ffe, 19691, especially if a purely visual DTP system is
being used.

Impermanence. T$ has been around for nearly 15

years, longer than any other DTP system, and quite

long enough for the mantle of impermanence to be

shrugged off: there is no other system whch can
claim anywhere near that level of stability and ro-

bustness. However, the present writer would be

among the first to disclaim any pretensions on the

part of T$ to being the final solution to a publisher's
problems (although properly implemented it has no

difficulty in seeing off the competition). It is diffi-
cult, however, to understand what T$ is supposed
to be a stop-gap for, because the logical conclusion a

reader might draw from the quotation above is that

SGML is some lund of printing system, whch it is

not, although it can be used for that purpose (for

example, in conjunction with something like T$).

Printing as a goal. WYSTCVYG T$ systems exist for

both PCs and Macintosh platforms, if a user feels
compelled to see type springing into existence pre-

maturely. There are also similar editors for SGML,
ranging from the simple to the sophisticated. The

misconception seems to be that printing on paper is

always going to be the goal of the writer and the pub-
lisher, but even if we accept this goal as the current

requirement, there appears to be no reason why both

T$ and SGML cannot be used together to achieve
this.

The increasing importance being attached to hy-

pertext systems, especially in academic publishing,
is amply evidenced by the presentations at schol-

arly conferences, for example (Flynn, 1993) the re-

cent meeting of the Association for Literary and Lin-

guistic Computing and the Association for Comput-

ing and the Humanities. While paper publication
will perhaps always be with us, alternative meth-

ods are of increasing importance, and systems such

as SGML are acknowledged as providing a suitable

vehicle for the transfer and storage of documents
(Sperberg-McQueen and Burnard, 1990) requiring

multiple presentations.

Software development. Before we leave this ana-
lysis, it is worth asking if publishers who are seek-

ing an easy-to-use, widely-available, public-domain

WYSIWYG-structured editor would be prepared to

back their demands with funding for the develop-

ment of such a system. Organisations such as the
Free Software Foundation are well-placed to support

and coordinate such an effort, and there are ample
human resources (and considerable motivation) in

the research and academic environment to acheve

the target.

Document Type Disasters

The newcomer to SGML is often perplexed by the

apparent complexity of even simple Document Type

D e h t i o n s (DTDs, whch specify how a document

is structured). Although there are several excellent
SGML editors on the market, many users are still

editing SGML in a plain file editor with perhaps the

use of macro key assignments to speed the use of

tags and entity references. Worse, the task of get-

ting the document printed in a typographic form for
checking by proofreaders who are unfamiliar with

SGML can present a daunting task without adequate
software.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

TeX and SGML: A Recipe for Disaster?

while we have said that such software is read-

ily available, there are two inhibiting factors: cost

and complexity. Although we are now beginning to

see wordprocessor manufacturers take an interest
in SGML (Wordperfect, for example), the impecuni-

ous researcher or student is still at a disadvantage,

as WYSIWYG software for SGML is still expensive for

an individual.

The problem of complexity is not easily solved:

designing a document at the visual level of typo-

graphy is already understood to be a specialist task

in most cases, and designing a document structure,
which is a purely conceptual task, without visual

representation, is at a different level of abstraction.

However, document structure design is not normally

the province of the publisher's author, and should
not affect the author's use of a structured-document

editor, once the initial concept has been accepted.

Into print. The comp . t e x t . sgml newsgroup re-

peatedly carries requests from intending users for
details of available editing and printing software,

which are usually answered rapidly with extensive

details. The low level of SGML's public image (the

'quiet revolution' (Rubinsky, 1992)) indicates one
possible reason why the system is still regarded with

misgivings by some people.
There have been several attempts in the past to

develop systems which would take an SGML instance

and convert its text to a T$ or bT$ file for printing.

The earliest appears to have been Daphne, developed
in the mid 1980s by the Deutsche Forschungsnetz in

Berlin, and the most recent is gf (comp . t e x t . sgml ,

4.6.1993) from Gary Houston in New Zealand (avail-

able from the Darmstadt f t p server). Several other
programs exist, including some written in T$ itself,

but the principal stumbling-block seems to be the

desire to make the program read and parse the DTD

so that the instance can be interpreted and conver-
ted accordingly.

A DTD contains information principally about

the structure of the documents which conform to

it, rather than about its visual appearance. (It is of

course perfectly possible to encode details on visual

appearance in SGML, but this is more the province

of the analyst or historian, who wishes to preserve
for posterity the exact visual nature of a document.)

The DTD is used to ensure conformance, often by an

editor while the document is being written or modi-

fied, or by a parser (a program which checks the syn-

tax and conformity of an instance to its DTD). Given

the easy availability of various versions of a formal

SGML parser (sgml s, from various f t p archives),
there seems to be little point in embedding that pro-

cess again in a formatter. Indeed, one conversion

system reported to this author takes the route of

using sgml s output as its input.

Through all these systems, however, runs the

thread that somewhere in the SGML being used must
reside all the typographcal material needed to make

the conversion to T$ (or indeed any typographical
system) a one-shot process. As has been pointed out,

t h s implies that the author or writer using SGML to

create the document must embed all the necessary
typographical data in the instance. Yet this is en-

tirely the opposite of the natural use of SGML, which

is to describe document structure or content, not its
appearance. Predicating typographic matters ties

the instance to one particular form of appearance,

which may be wholly irrelevant.

Style and content. One of T$'s strongest features
is that of the style file, a collection of macros to im-

plement a particular layout or format. In particular,

where t h s uses some form of standardised naming

for the macros, as with I&T$ or epl ai n , the portab-

ility of the document is greatly enhanced. A single
word changed in the documentstyl e and the entire
document can be re-typeset in an entirely different

layout, with (usually) no further intervention.

The convergence of SGML and TEX for the pur-

poses of typesetting brings two main advantages:

the use of T$'s hghly sophisticated typesetting en-

gine and the formally parsed structure of the SGML

instance. In such a union, those elements of the DTD
whch do have a visual implication would migrate to
a macro file, in whch specific coding for the visual

appearance of the current edition could be inserted,
and the SGML instance would migrate to a T$ or

bT$ file which would use these macros.

In this way, we would avoid entirely the predic-

ation of form within the SGML: it becomes irrelevant

for the author to have to be concerned with the ty-
pographic minutiae of how the publication will look

in print (although obviously a temporary palliative

can be provided in the form of a WYSIWYG editor).

We also avoid tymg the instance to any one particu-

lar layout, thus enabling the republication (or other

reuse) in a different form at a later date with a min-

imum of effort.
The most undemanding form of conversion is

thus one where the appearance is completely un-
referenced in the SGML encoding. This means that

the publisher (or typesetter) has all the hooks on

which to hang a typographc implementation, but is

not restricted or compelled to use any particular one

of them.

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Peter Flynn

A pilot program: sgml2 tex

The author's own pilot attempt at this form of
conversion can be seen in the SGMLZTeX program,
available by anonymous f t p from cu r i a . ucc . i e in
pub/tex/sgml Ztex. z i p. This was developed in PCL
(a language written explicitly for high speed devel-
opment on the 80n86 chips): WEB should probably
be the basis for a future version.

The program reads an SGML instance character
by character, and converts all SGML tags into T$-like
control sequences, by removing the < and > delirn-
iters and prepending ' \ s t a r t ' or '\f i ni sh' to the
tag name. Attributes are similarly treated, w i t h
the domain of the enclosing element, and with their
value given in curly braces as a T$ macro argument.
Entity references are converted to simple T$ control
sequences of the same name.

The output from the program is a . t ex file and
a . s t y file. The . tex file contains an ' \ input1 of
the . s t y file at the start, and also a '\byey at the
end; otherwise it is merely a representation of the in-
stance in a form digestible by TEX or BTG. The . s t y
file contains a null definition of every element, at-
tribute and entity encountered in the instance. Thus
the fragment

prepend ' < t t > & b s o l ; s t a r t < / t t > '
becomes

prepend
'\startTT{}\bsol {}s t a r t \ f i n i s h W '

in the . t ex file, with the following definitions
in the . s t y file:

\def\startTT{}
\def\f i ni shTT{)
\def\bsol { }

All line-ends, multiple spaces and tabs in the
instance are condensed to single space characters.

It must be made clear that this pilot is not a
parser: it does not read any DTD and has no under-
standing of the SGML being processed, although a
planned rudimentary configuration file will allow a
small amount of control over the elimination of spe-
cific elements where no conversion is desired. There
is also no capability yet for handling any degree
of minimisation, so all markup must be complete
and orthogonal (as many parsers and editors already
have the capability to output such non-minimised
SGML code, this should not cause any problems).
As the DTD is not involved, the instance being con-
verted must therefore also have passed the parsing
stage: it is the user's responsibility to ensure that
only validly-parsed instances are processed. Addi-
tionally, n o attempt has been made to support sci-

entific, mathematical or musical tagging, as t h s is
outside the scope of the pilot.

As it stands, therefore, the output file is a valid
TEX file, although trying to process it with null defini-
tions in the . s t y file would result in its being treated
as a single gigantic paragraph. However, editing
the . s t y file enables arbitarily complex format-
ting to be impIemented: the present document
(http: //curi a . ucc. i e / t l h/curia/doc/achall c. html)
is a simple example.

Conclusions

The pilot program certainly is a stop-gap, being
severely limited: there are many other related areas
where SGML design, editing, display and printing
tools are still needed. There is still no portable and
widespread public-domain dedicated SGML editor
such as would encourage usage (although an SGML-
sensitive modification for emacs exists and the in-
terest of Wordperfect has been noted). Although
SGML import is becoming available for some high-
end DTP systems, migration and conversion tools
are still at a formative stage.

One particular gap is highlighted by the need for
a program to assist the user in building a DTD, with a
graphical interface which would show the structure
diagrammatically, so that permitted and prohibited
constructs can be analysed, and a valid DTD gener-
ated.

SGML has now passed the phase of 'new
product' and is on its way to greater acceptance,
but the real disaster would be for it to become an
isolated system, unrelated to other efforts in com-
puting technology. This will only be avoided by the
concerted efforts of users and intending users in de-
manding software whch can bridge the gaps.

Bibliography

Beard J. "The art and craft of good science", Personal
Computer World, page 3 50, June 1993.

Fyffe C. Basic Copyfitting, London: Studio Vista, page
60, 1969.

Goldfarb C. The SGML Handbook, OUP, 1990.

Knuth D.E. The Tgbook, Addison-Wesley, 1984.

Rubinsky Y. "The Quiet Revolution", keynote speech,
SGML92 Conference, October 1992.

Sperberg-McQueen C.M. and Burnard L., (eds).
Guidelines for the Encoding and Interchange
of Machne-Readable Texts, Draft version 1.1,
ACH/ACL/ALLC, Chcago & Oxford, 1990.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

An Abstract Model for Tables

Xlnxin Wang
Department of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
internet: wangewatdragon. uwaterloo. ca.

Derick Wood
Department of Computer Science, University of Western Ontario
London, Ontario N6A 5B7, Canada
Internet: dwoodecsd . uwo. ca.

Abstract

We present a tabular model that abstracts a wide range of tables. We abstract the
logical structure of tables, rather than their presentational form. The model can be

used to guide the design and implementation of tabular editors and formatters.

In addition, the model is formatter independent; it can be used to direct the

formatting of tables in many typesetting systems, including TEX.

Introduction

Although tables are widely used in daily life to con-

vey information in a compact and convenient form,

tabular processing is one of the most difficult parts

of document processing, because tables are more
complex than other textual objects. The separation

of the logical and layout structures of documents is

widely used in many document formatting systems

(Lamport (1985); Quint and Vatton (1986); and Reid
(1980)). It enables authors to focus on the manip-

ulation of the logical structure of a document. The

layout structure is determined by the formatting sys-

tems based on style specifications; thus, h g h qual-

ity typeset documents can be produced with little
or no help from typographers. Tabular formatting

is, however, the weak link in most formatting sys-
tems. The main reason is that the tabular models

used in many systems (Beach (1995); Biggerstaff et
al. (1984); Cameron (1989); Lamport (1985); and

Lesk (1979)) are presentation dependent; that is,
the models describe tables based on their presenta-

tional form. In other words, it is the user's respon-

sibility to design the geometric arrangement of tab-

ular components. Some systems (Improv Handbook

(1991) and Vanoirbeek and Coray, eds. (1992)) use

presentation-independent models for tables that are
based on their logical structure; however, the mod-

els fall short in that they are made with specific en-

vironments i n mind. The strength of our model is

that it is not tied to any specific realization and it
can be viewed as an abstract data type. One other
drawback of most tabular systems is that the tab-

ular operations that are provided are too weak to

manipulate tables based on the logical relationshps

among tabular components.
We are currently developing a tabular composi-

tion system based on this model, whch can be used
as a front end for LATEX tables.

In this paper, we first summarize the main char-

acteristics of tables, and then present our model. To
conclude the presentation, we compare our model

with Vanoirbeek's model and also discuss the influ-

ence of our model on the design and implementation

of a tabular composition system.

The Characteristics of Tables

The Oxford English Dictionary defines a table as:

"an arrangement of numbers, words or items of any

lund, in a definite and compact form, so as to ex-
hbi t some set of facts or relations in a distinct and

comprehensive way, for convenience of study, ref-

erence, or calculation". This definition summarizes

the characteristics of a table using three different
aspects: content, form and function.

The content of a table. The content of a table is a

collection of inrerrelated items, which can be num-

bers, text, symbols, figures, mathematical equations,

or even other tables. In most tables, these items can

be divided into two classes based on their function

in the table: entries, which are facts of any lund that

we present in a table, and labels, which we use to

locate the entries. The logical relationships among
the items of a table are the associations among la-

bels and entries. Each entry is associated with a set

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 231

Xinxin Wang and Derick Wood

Table 1: The average marks of CS351i1991-1992).

k&y Term

1991

Winter

Summer

Fall

1992

Winter

Summer

Fall

-1 Final

lidter Final marks

of labels; for example, in Table 1, entry 85 is as-

sociated with labels 1991, Winter, Assignments and

Assl. The items and the logical relationships among
them provide the logical structure of a table, which

is the primary information conveyed by the table and

which is independent of its presentational form.

We can describe the logical structure of a wide
range of tables in this way: first, we group the labels

into n categories such that in each category labels

are organized in a tree structure, and then we asso-

ciate each entry with one, or more, n-element sets
of label sequences where each label sequence is the

catenation of labels on the path from the root to a

leaf in a category. For example, the labels of Table 1

can be grouped into three categories:
Year = 11991, 19921,

Term = {&'inter, Summer, Fall}, and

Mark = {Assignments, Exams, Final marks}.
In category Mark, there are two subcategories:

Assignments = {Assl, Ass21 and

Exams = {Midterm, Final}.
Entry 85 is associated with a 3-element set

of label sequences: {Year.1991, Term.Winter,

Mark.Assignments.Ass1); Entry 76 , whch appears
in the table twice, is associated with two 3-

element sets of label sequences: iYear.1992,

Term.Fal1, Mark.Assignments.Assl} and iYear.1992,

Term.Surnmer, Mark.Assignments.Ass2 } .

The form of a table. The content of a table must be

presented in some form and on some medium. Usu-

ally, tables are presented as a row-column structure
on a two-dimensional plane, such as paper or screen.

The presentational form of a table consists of two

components: the topological arrangement and the

typographc specification. The topological arrange-
ment is a n arrangement of the table components in

Table 2: The average marks of CS351i1991-1992).

Exams

Final

Mark

two-dimensional space such that the logical struc-

ture of the table is clearly conveyed; for example,

where to put the labels and entries and how to order

the labels in a category. The typographc specifica-
tion is a group of formatting attributes for rendering

tabular data and the graphc objects that are used

to outline the topological arrangement, such as the
font type for entries, the line style for rules, and so

on. The content of a table can be presented with dif-

ferent topological arrangements and different typo-

graphic specifications. For example, Tables 1 and 2

are two different presentations for a three-category
table. Although the row-column structure is a famil-

iar and natural form for tabular presentation, tables
may also be presented in other forms, such as the

bar graph, the pie graph, and so on.

Final Marks

The function of a table. The main function of a
table is to convey data and its relationship in a com-

pact and convenient way.

Winter

The Tabular Model

1991

74

In our opinion, a tabular composition system should

allow users to be mainly concerned about the logical

structure of tables; they should leave the presenta-
tional form to a high-quality tabular formatting sys-
tem that requires little or no user intervention. A

tabular model for such a system should possess the

following characteristics:

1992

Summer

it can be used to abstract a wide range of tables;

1991

Fall

75

it is presentation independent; that is, it cap-

tures the logical structure of tables and ignores

any topological and typographc attributes; and

1992 1991

0 it includes a group of operations that support

tabular manipulation.

199;

70

232 TUGboar, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

78 80 72

An Abstract Model for Tables

2. l abe l o (U F i x]) , if D = (l a b e l , S) .

Figure 1: The relationship between a labeled domain

and its tree.

We specify our tabular model with mathematical
notions so as to avoid the representational struc-

ture and the implementation details. Therefore, the

model can also be viewed as an abstract data type;

that is, an abstract table and a set of operations.

Terminology. We first define some terminology be-
fore we give the definition of an abstract table.

A labeled set is a label together with a set. We

denote a labeled set as (l abe1 , s e t) .

A labeled domain is defined inductively as fol-

lows:

1. A labeled empty set (L , 0) is a labeled domain.

2. A labeled set of labeled domains is a labeled
domain.

3. Only labeled sets that are obtained with rules 1

and 2 are labeled domains.

A labeled domain can be represented by an un-

ordered tree of labels. Figure 1 presents the re-

lationshp between a labeled domain and its tree.
Each node in the tree represents a labeled domain.

For convenience, we will use the tree of a labeled

domain to explain some concepts that are related to

labeled domains. If a labeled domain D = (L , S), we

use L[Dl to denote the label L, of D, and S[Dl to

denote the set S of D.

A label sequence is either one label or the cate-

nation of multiple labels separated with the symbol

'.'. With the tree of Figure 1 , D l and D l . d l l . d l l 1 are

two examples of label sequences. Operation o takes

a l abe l and a set of label sequences i s l , . . . , snl as

operands and its result is a set of label sequences
such that

l abe l o Isl, . . . , s n] = { l a b e l s l , . . . , label.s,}.

The frontier of a labeled domain D is the set

of external nodes of the tree of D. It is denoted by
F[Dl and is defined inductively as

1. { l a b e l } , if D = (l a b e l , 0) ;

xES

With the labeled domain of Figure 1, F[D1] =

{ D l . d l l . d l l l , D l . d l l . d l 1 2 , D l . d l 2 , D l . d l 3 j .

A frontier item of label domain D is any mem-

ber of F[Dl. It is the label sequence on a path from

the root to an external node in the tree of labeled

domain D.
An item of a labeled domain D is any prefix of a

frontier item of D; it is the label sequence on a path

from the root to a node in the tree of D. With the la-

beled domain of Figure 1, D l , D l . d l 1 , D l . d l l . d l l 1 ,

D l . d l l . d l l 2 , D l . d l 2 and D l . d l 3 are all items of
the labeled domain D l . An item is actually the la-

bel sequence on the path from the root to a node in

the tree of the labeled domain D. We use an item to
identify its associated node.

If i is an item, we use L D [i] to denote the la-

beled domain represented by the associated node of

i and P [i] to denote the item that identifies the direct

parent of the associated node of i. For example, with
the labeled domain of Figure 1 , if i = D l . d l l . d l l 2 ,

then L D [i] is the labeled domain (d 1 1 2 , 0) and

P [i] = D 1 . d l l . If L D [i] = (L , S) , we also use L [i]

to denote the label L, S [i] to denote the set S , and
F [i] to denote the frontier of L D [i] .

The dimension of a labeled domain D = (L , S)

is denoted by D i m [D] ; it is the number of elements

in S. With the labeled domain of Figure 1 , D l =

(D l , i d l l , d 1 2 , d 1 3 1) ; thus, D i m [D 1] = 3. We say

that two items i and j are in the same dimension of
D if and only if both the associated nodes of i and j

are in a child subtree of the tree of D. For example,

with the labeled domain of Figure 1, D l . d l 1 and

D l . d l l . d l 1 1 are in the same dimension of D l , but
D l . d l 1 and D l . d l 2 are not.

For n > 1 , an n-set is a set of n elements. For

two sets A and B, A 8 B is the set of all 2-sets that

consists of one element of A and one element of B.

A 8 B is similar to, yet different from, A x B, the

Cartesian product of A and B. It is similar in that we
take all pairs of elements, one from A and one from

B; it is different because we obtain unordered pairs,

rather than ordered pairs. It is unordered Cartesian
product.

We now apply @ to labeled domains as follows.

It takes a labeled domain D = (L , S) as operand and
it results in a set in whch each element contains

D i m [D] frontier items, each of which identifies an

external node of a labeled domain in S; that is,

D = 0, i f S = 0
= { L o I t l , . . . , t,] 1 t i E F[D,], 1 I i I n l ,

i f S = { D 1 , . . . , D n l .

TUGboat, Volume 14 (1993) , No. 3 -Proceedings of the 1993 Annual Meeting

Xinxin Wang and Derick Wood

Table 3: A three-category table.

D = (D , { (D l , { (d l l , 01, (d 1 2 , 0) 1 1,
(0 2 , { (d 2 1 , 0) , (d 2 2 , 0) , (d 2 3 , 0111,
(0 3 , I (d 3 1 , { (d 3 l l , D) , (d 3 l 2 , 0111,

(d 3 2 , 0) 1
1

1
) 9

E = { e l , e 2 , e3, e4 , e5 , e6, e7 , e8 , e 9 } , and

G ({ D . D l . d l l , D.D2.d21, D.D3.d31.d311)) = e l ;

G ({ D . D l . d l l , D.DZ.d21, D.D3.d31.d312}) = e2;

G ({ D . D l . d l l , D.D2.d22, D.D3.d31.d311]) = e3;

G ({ D . D l . d l l , D.D2.d22, D.D3.d31.d312}) = e3;

G ({ D . D l . d l l , D.DZ.d23, D.D3.d31.d311}) = e4;

d ({ D . D l . d l l , D.DZ.d21, D.D3.d32}) = e5;

G ({ D . D l . d l l , D.D2.d22, D.D3.d32}) = e5;

For example, with the labeled domain of Figure 1,

D l = { { D l . d l l . d l l l , D l . d l 2 , D l . d 1 3 } ,

i D l . d l l . d l l 2 , D l . d l 2 , D l . d l 3) j .

The definition of an abstract table. An abstract ta-
ble consists of three elements: a labeled domain, a

set of entries, and a function from a set of n-element
sets of frontier items (n is the dimension of the la-

beled domain) to the set of entries. It can be formally

defined by a tuple (D , E, 6) , where

D is a labeled domain

E is a set of entries

6 is a partial function from @D onto E

We use a labeled domain D to describe the cat-
egory structure of a table, the dimension of a la-

beled domain corresponds to the number of cate-

gories of the table, and each labeled domain in S[Dl

corresponds to a category. We use a function to
describe the logical associations among labels and

entries. Using t h s model, Table 3 can be abstracted

by (D , E, 6) , where

Table 4: A two-category table.

1
e l l e l 2 e l 3 e l 4

Basic operations for abstract tables. We define a
basic set of operations for tabular editing. These

operations are divided into four groups: operations
for categories, items, labels, and entries. For each

operation, we first give its name and the types of its
operands and result, and then explain its semantics

informally.

Category operations. There are two operations for

categories.
The operation Add-Category adds a new cate-

gory to a table. It takes a table T = (D , E , 6) and a

labeled domain Dm as operands, and returns a new

table T = (D ' , E' , 6 ') such that:

(1) D' is produced by inserting Dm into the set of

D;

(2 j the entry set E' is the same as E;

(3) 6' maps any f s E @Dl, whch contains an ele-

ment L [D l . f such that f is a frontier item of

Dm, to 6 (f s - { L [D] . f } j . For example, if T
is Table 4 , Add_Category(T,D3), where 0 3 =

(0 3 , { (T l , 0), (T2, @) I) , produces Table 5 .

The operation Remove-Category removes a

category from a table. It takes a table T = (D, E , 6)

and an item d i (whch must identify an element of
the set of labeled domain D) as operands, and re-
turns a new table T = (D ' , E' , 6 ') such that:

(1) D' is produced by deleting the labeled domain
LD[d ,] from the set of D;

234 TUGboat, Volume 14 (1993) , No. 3 -Proceedings of the 1993 Annual Meeting

An Abstract Model for Tables

Table 5: After adding a new category to Table 4.

1 I-; 1 1 e2 1 e3 1 e4 1 e5 1
T2 e7 e8 e9 e l0

L3 e l l e l2 e l 3 e l 4 e l5

Table 6: After removing a category from Table 5 .

S 2

e5

e l0

e l5

e l e2 e3 e4

T 1 e6 e7 e8 e9

e l l e l2 e l 3 e l 4

e l e2 e3 e4

T2 e6 e7 e8 e9

e l l e l2 e l3 e l 4

S13

e4

e9

e l4

S12

(2) E' is a set in whch each element is {6(f s u
{LID].kl}), . . . , 6 (f s u {L[D].k,})} where f s
is any element of @D' and k l , . . . , k, are all

frontier items of LD[d,];

(3) 6' maps any f s E 8D' to set {6(fsu{L[D].kl}),
. . ,6 (fsu{L[D].k,})}. For example, if Tis Ta-

ble 5, then Remove-Category (T, D l) produces
Table 6.

Item operations. There are four operations for
items.

The operation Insert-Item inserts a labeled tree

to a category. It takes a table T = (D, E, 6), one of its

items p (whch cannot be D) and a labeled domain C

as operands and returns a new table T = (D', E', 6')
such that:

(1) D' is produced by inserting C into the tree of D

such that C will be a chld of LD[pl ;

(2) E' is the same as E;

(3) if p is a frontier item of D, then 6' will map

every element f s E @Di whch contains p.f

T1

Table 7: After inserting an item to Table 4.

L 1

L2

L3

Table 8: After deleting an item from Table 4.

I I I I I I

e l

e6

e l l

such that f is a frontier item of C, to 6((f s -

{p. f}) u {p}); otherwise, 6' on these elements

is undefined; for other f s E @Dt, 6'(f s) is

the same as 6(fs). For example, if T is Ta-
ble 4, Insert-Item(T,D.DZ.Sl, C), where C =

(S14,0) , produces Table 7.

The operation Delete-Item deletes a labeled

tree from a category. It takes a table T = (D, E, 6)

and one of its items i (whch cannot be D or any item
that identifies a child of D) as operands, and returns

a new table T = (D', E', 6') such that:

(1) D' is produced by removing the labeled domain

LD[i] from D;

(2) E' is produced by removing all entries that are

not mapped from any element in sD ' by 6;

(3) if the old parent of i, i.e, P[i], becomes a frontier
item, then 6' on any f s E 8D1, which contains

P[i], is undefined; for other f s E sD', 6'(f s) is

the same as 6(f s) . For example, if T is Table 4,

Delete-Item(T, D.D2.Sl.S12) produces Table 8.

The operation Move-Item moves a subtree to

a new place within a category. It takes a table

T = (D,E, 6) and two of its items c and p that

L3

TUGboal, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

e2

e7

e l2
e l4 L3

e3

e8

e l 3
e l 3 e l2 e l l

e l l

e l 3

el2 e l4 e l5

Xinxin Wang and Derick Wood

Table 9: After moving an item in Table 4.

are in the same dimension of D (p cannot be a de-
scendant of c) as operands, and returns a new table

T = (D', E', 6') such that:

(1) D' is produced by moving labeled domain

LD[c] to be a child of labeled domain LD[p];

(2) E' is the same as E;

(3) 6' maps any f s E @D' which contains item

p.t where t is a frontier item of LD[cl to

b((fs - {p.t}) u {P[c].t)), and if the old par-
ent of c , i.e, P[c], become a frontier item of

D', then 6 on any f s E @D', which contains

P[cl, is undefined; for other fs E @Df, S f (f s)
is the same as 6(f s) . For example, if T is Ta-
ble 4, Move-Item(T, D.D2.S1 3 1 , D.D2) pro-

duces Table 9.

The operation Copy-Item duplicates a subtree

in a category. It takes a table T = (D,E, 6) , two of
its items c and p that are in the same dimension of

D, and a label 1 as operands, and returns a new table
T = (D', E', 6') such that:

(1) D' is produced by copying labeled domain

LD[cl to be a chld of labeled domain LD[p]
and assigning label 1 to the new labeled domain

copied from LD[c];

(2) E' is the same as E;

(3) if c is a frontier item of D, then 6' maps

any f s E sD' which contains item p.l to

6 ((f s - {p.1)) u {c)) , otherwise, 6' maps any

f s E sD ' w h ~ h contains item p.1.t such that

c.t is a frontier item of D to 6 ((f s - {p.l.t}) u
{c.t)); for other f s E @Df, d'(fs) is the

same as 6 (f 5). For example, if T is Table 4,

Copy-Item(T, D.D2.Sl.S112, D.D2.Sl,S14)

produces Table 10.

Label operations. There are two operations for la-
bels.

The operation Put-Label assigns a new label to
a labeled domain. It takes a table T = (D, E, 61, one

of its items i, and a label 1 as operands, and returns a

Table 10: After copying an item in Table 4.

new table by assigning the label 1 to labeled domain

LD[i].
The operation Get-Label takes a table T =

(D , E, 6) and one of its items i and returns the la-

bel of i.

Entry operations. There are two operations for en-

tries.
The operation Put-Entry associates a new en-

try with a set of frontier items. It takes a table
T = (D, E, b) , an entry e and a number of fron-

tier items f i , . . . , f ~ i m (o] such that {fi, . . . , fDim[D] I
must be an element of sD . It returns a new table by

putting entry e into table T such that the new func-

tion maps { f l , . . . , fDtm[D1} to e. If the old entry

mapped from { f i , . . . , fDim[D]} is not mapped from
any other element in @D, it will be deleted from E.

The operation Get-Entry returns the entry that

is associated to a set of frontier items. It takes a ta-
ble T and a number of frontier items fl , . . . , fDim[Dl

such that { f i , . . . , fDimrol} must be an element of
s D as operands, and returns the entry that is

mapped from {fi, . . . , fDim[D] 1 .

L2

L3

Conclusions

We have presented a tabular model that, although it
is not a universal model, can be used to abstract
a wide range of tables. This model is presenta-

tion independent because it abstracts only the log-
ical structure of multi-dimensional tables and ex-

cludes any topological and typographic attributes.
T h s characteristic makes it possible to design a tab-

ular composition system in such a way that users

are mainly concerned about the logical structure of

tables, and the layout structure of a table is deter-

mined by the system based on style specifications.

In t h s way, we can manipulate and format tables in
a uniform way like other textual objects.

e6

e l l

236 TUCboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

e7

e l2

e8

e l3

e9

e l4

e7

e l2

e l0

e l 5

An Abstract Model for Tables

Our model is simdar to Vanoirbeek's model

(Vanoirbeek and Coray, eds., 1992), although we de-
rived it independently. The major difference be-

tween these two models is the way to specify the
logical structure of a table. In Vanoirbeek's model,

the logical structure of a table is modeled by a tree

with additional links: a table contains a set of logi-

cal dimensions and a set of items (entries); the log-

ical dimensions include rubrics (labels) which may

themselves contain subrubrics; links are used to rep-

resent the connections between items and rubrics.

The main reason for t h s representation mechanism
is to ensure that the table representation conforms

with the hierarchical structured document represen-

tation used in the host system Grif (Quint and Vat-
ton, 1986). In our model, the logical structure of a
table is specified mathematically; it avoids the rep-

resentational structure and implementation details.

Our model is not tied to any specific environment;

thus, we can develop a tabular composition sys-

tem based on this model that can be used to direct
the formatting of tables in different typesetting sys-

tems. Another difference is that the operations for

rearranging the category structure and maintaining

the logical relationships among labels and entries in

Vanoirbeek's model and its Grif implementation are

weaker than those in our model; for example, we can

move and copy all labels in a subtree of a category
and their associated entries.

Acknowledgements

We thank Darrell Raymond for his support and care-

ful reading of a preliminary version of thls paper.

Bibliography

Improv Handbook. Lotus Development Corporation,

Cambridge, MA, 199 1.

Beach, R. J. Setting Tables and Illustrations with Style.

PhD thesis, University of Waterloo, Waterloo,

Ontario, Canada, May 1985. Also issued as Tech-

nical Report CSL-85-3, Xerox Palo Alto Research

Center, Palo Alto, CA.

Biggerstaff, Ted J., D. Mack Endres, and Ira R. For-

man. "TABLE: Object Oriented Editing of Com-

plex Structures". In Proceeding of the 7th Inter-

national Conference on Software Engineering,
pages 334-345, 1984.

Cameron, J. P. A Cognitive Model for Tabular Edit-

ing. Techmcal Report OSU-CISRC-6/89-TR 26,

The Ohio State University, Columbus, OH, June
1989.

Lamport, Leslie. ETg: A Document Preparation Sys-

tem. Addison-Wesley, Reading, M A , 1985.

Lesk, M. E. "tbl-A Program to Format Tables". In

UNLX Programmer's Manual, volume 2A. Bell

Telephone Laboratories, Murray Hill, NJ, 7th edi-

tion, January 19 79.

Quint, Vincent and Irene Vatton. "Grif: An Interac-
tive System for Structured Document Manipu-

lation". In Text Processing and Document Ma-
nipulation, Proceedings o f the International Con-

ference, pages 200-312, Cambridge, UK, 1986.

Cambridge University Press.

Reid, Brian K. Scribe: A Document Specification Lan-

guage and its Compiler. PhD thesis, Carnegie-
Mellon University, Pittsburgh, PA, October 1980.

Also issued as Technical Report CMU-CS-81-

100, Carnegie-Mellon University.

Vanoirbeek, Christine. "Formatting Structured Ta-

bles". In C. Vanoirbeek & G. Coray, edi-

tor, EP92fProceedings of Electronic Publishing,

1 992), pages 291-309, Cambridge, UK, 1992.

Cambridge University Press.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Developing a Multi-Windowing Environment for Research Based on TEX

Michel Lavaud
C.N.R.S.
GREMI, Universite d'orleans,
45067 O R L ~ N S Cedex (France)
Internet: lavaudecentre. univ-or1 eans . f r

Abstract

We have devised an experimental program, AST$, whch provides an easy to use
multi-window environment adapted to research work. It runs on any PC and is
b d t on the top of a commercial all-in-one software (Framework). It endows it with
scientific capabilities by coupling it to emTEX, Maple, Fortran and other scientific
software. It allows for the easy modification of the structure of large multi-author
documents and the performance of numerical and formal computations from the
document. It adds a hypertext file manager, a preprocessor of FTEX structure,
hypertext help and hypertext archving of messages, among others. It can use the
multitasking capabilities of Desqview or OS/2.

Many of the functions of AST$ could be implemented also on the top of other
existing software (commercial or public domain), provided they are endowed with
an internal programming language whch is powerful enough. We hope this could
be done with GNU emacs.

Several commercial WYSIWYG scientific word-
processors on PCs are now able to produce very nice
output. Since the advantage of TEX is diminishing as
concerns quality of output, some leading TjXperts
have concluded that it is becoming too old, and have
proposed creating a New Typesetting System from
scratch, which would incorporate all aspects that are
missing from TEX.

On the other hand, more and more scientists
have access to international networks, and they are
now using TEX as a language in the linguistic sense
of the term, i.e., as a means of communication. This
implies that TEX must remain stable in time as much
as possible, for it to be able to fulfill this communic-
ation function.

We suggest that keeping TEX unchanged, as de-
sired by many users, is not incompatible with build-
ing easy-to-use and powerful TEX-based software, as
desired by TEXperts. This can be done by improving
front ends and back ends to TEX and malung them
cooperate together via a multitaskmg 0s.

In t h s article we describe a program, AST$, that
we have written and that illustrates this point of
view. It might provide -we hope - some guidelines
for future developments in t h s direction.

Existing interfaces to TEX

In his article about the Future of TEX (Taylor, 1992),
Philip Taylor described how painful it was to use

TEX in the early eighties. Although he assured that
TEX users enjoy this way of worlung.. .for those who
do not, there are now several user-friendly pub-
lic domain interfaces to TEX and related software,
that make its use much easier! The first one is the
AUCTEX Lisp package for GNU emacs. It is extremely
powerful since it is based on the complete version
of emacs; t h s requires 386-based PCs and big hard-
disks, and preferably OS/2 or Unix. Another inter-
face that runs under OS/2 is TjXpert, by Johannes
Martin.

For DOS users, there is the very nice interface
T~Xshell, by J. Schlegelmilch. Its latest version (2.5.2)
is particularly useful for all users, since there is now
on-line help on LATEX in English. It is also public
domain, and very user-friendly. A new one, 4TEX
(W. Dol, et al., 1993), appeared very recently. It uses
the shareware programs 4 ~ 0 s and QEDIT. It seems
very nice too. Our interface ASTEX uses the cornrner-
cia1 program Framework, and optionally Desqview
or OS/2.

Finally, there are also several commercial sci-
entific word-processors that are able to edit math-
ematical equations in WYSIWYG mode and are able
to export them in TEX form (see Lavaud, 1991 and
1992 for some references).

T h s shows that, even on PCs, the Lion must
not be afraid any more of the Mouse (Siebenmann,
1992). . .

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Multi-windowing environments for TEX

Motivations for writing AST$

In the early hstory of computer science, programs
were written on sheets of paper by researchers,
typed on punched cards by specialized typists, and
submitted to the computer by an operator. When
teletype terminals became available, all scientists
began to type and run their computer programs
themselves because this allowed them to gain much
time, despite the fact that they did the work of three
people.

Many researchers still write their scientific art-
icles by hand, and have them typed by secretaries.
This can take a very long time, especially for articles
with many complicated formulae. It seems reason-
able to expect that, if software adapted to research
work becomes available, all scientists will also type
their articles themselves, because this wdl allow
them to gain much time, as with teletype termin-
als. In an earlier article (Lavaud, 1992), we argued
that, for a software to be adapted to scientific work:

It must allow the user to display and modify

easily the structure of the document, to ensure
that even very long multi-author documents will
be coherent and logically organized;

it must allow for the performance of everyday
research tasks from the document (numerical
and formal computations, management of the
files created or received in the research process,
etc.);

it must be TEX-based.

The first point implies that a document cannot
be just a sequence of characters typed inside one or
a few windows; it must be a tree whose leaves are
windows that contain coherent blocks of informa-
tion of various nature (paragraph of text, worksheet
of numerical results, database, computer program,
numerical result, e-mail, illustration, etc.).

Overview of AST$'s possibilities

We enumerate here the main possibilities of AST$.
Some are developed in more detail below. Others are
detailed in Lavaud, 1991 and 1992 and in references
therein.

Hypertext file manager:

- Immediate access to thousands of files
through hierarchy of explicit titles.

- Easy modification of the structure of very
big multi-author documents.

Scientific computations:

- Numerical (e.g., Fortran): compilation / ex-
ecution run directly from text of the docu-
ment.

- Formal (e.g., Maple): results automatically
included in text, worksheets, databases.

- Live links to data files.

- Interdependent worksheets.

Scientific text processing:

- Mathematical and chemical formulas dis-
played with a single keystroke.

- Preprocessor of Q X structure.

- Cut and paste from hypertext help into the
document.

- Automatic generation of environments.

- Creation of LATEX tables from worksheets
or databases of formulas.

Tool Box:

- External DOS (and UNIX) tasks can be run
from a customizable Tool Box.

Electronic mail:

- Hypertext archiving of messages.

- Automatic extraction of messages from
files issued from discussion lists.

- Local archiving of information about ftp
and archie servers to speed up connec-
tions.

Hypertext help for AST$, LATEX, emT& Ghost-
script, graphs used in physics . . .

The hypertext file manager of AST$

Writing a multi-author scientific book from scratch,
(or collating results of a research team regularly over
several years) is not only the matter of typing text
with a scientific word-processor. When you create
with colleagues a document that will at the end have
several hundred pages, and that will make reference
to hundreds of files (articles, chapters of book, nu-
merical results, computer programs, input and out-
put data, electronic illustrations, electronic mail.. .),
it is very important to be able to navigate easily, in a
logical way, in the document and in the files that are
related to it, during the whole process of its creation.
You need a file manager which allows you to classify
and archve your files in a structured way, so that
you can retrieve them easily, with a few keystrokes,
regardless of who created them.

Usual file managers. With usual file managers
(those of Framework 3, of Windows 3.1, etc.), you
access a file from its physical location on disks: you
have first to remember on which disk it is, then in
which directory. Then, you have to scroll among a
set of files, most of which are not pertinent to your
document. Moreover, as names of files and direct-
ories are limited to eight characters (with MS/DOS),

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 239

Michel Lavaud

they are not very explicit in general, and it may be

very difficult to retrieve a file that was created or

received a long time ago (see Figure 1). Even worse,
files created by colleagues and pertaining to the doc-

ument may have been moved without their alerting

you.

Iexte: Options: Caracthrss indices Oui

Figure 1: File retrieval with the file manager of
Framework 3, illustrated with e-mail received from

the GUTenberg discussion list (French TEX Users

Group): names of archive files are not explicit, files
are scattered over several disks.

The file manager of ASTE7J. For ASTEX, a document is
a set of files related logically and accessible from one

of them (the master file) by loading into linked win-

dows. The set of files has a tree structure, and each

file is itself a tree whose leaves are objects of vari-

ous nature (linked windows, texts, databases, work-

sheets, graphics, computer programs.. .). The files
may be on different media and be created/modified

by several people on a network.
With the hypertext file manager of ASTEX, a file

is accessed from its logical location in the document,

not from its physical location on disk. Each file re-

lated to the document is retrieved from a hierarchy
of explicit titles. T h s way of accessing files has
many advantages, among which (see Lavaud, 1991

for more details):

The way to retrieve a file from the document re-

mains unchanged when the file is moved phys-

ically to another place for some reason (the dir-

ectory is too crowded, the local hard disk is
full,. . .).
Only the files pertinent to the document are dis-

played and accessible from it. The files that are

unrelated are not displayed.

Modifying the structure of a document is very

easy and very fast, because files are reorgan-

ized logically in the document, not physically

on dlsk(s).

A file can be accessed from several documents,

in different ways, i.e., with different hierarchies

of titles.

Data (e.g., computer programs, numerical res-

ults, etc.) can be accessed as live links (i.e., the

latest version of the data file is automatically

loaded) or stored as backups in parent files.

One has several levels of backup for linked files.

You are automatically informed of new files ad-
ded to the document by colleagues, without

them having to tell you.

Figure 2: File retrieval with the hypertext file man-

ager of AST$, illustrated with the same example as

in Figure 1. e-mail is retrieved from a hierarchy of

titles.

Word processing with AST$

The general philosophy of AST$ is to display inter-

actively only global formatting of text, and to use

LATEX commands for local formatting. These are con-

sidered as encapsulated in small blocks of informa-
tion that are stored into linked files. ASTEX deals with

the organization of these blocks through organiza-

tion of linked windows on screen, and it allows the

author to forget completely about local formatting

commands. He is just reminded of the contents of
the blocks through their titles, and he can concen-

trate on the important part of h s work, that is on

the logical connection of the various components of

h s document and on the scientific computations that

are related to it.

240 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Multi-windowing environments for TEX

WYSIWYG or not WYSIWYG? That is the question!
When speakmg of WYSIWYG scientific editors, one

thnks automatically of interactive editing of math-

ematical formulas. In an earlier article (Lavaud,

1992), we explained that there are many interactive

equation editors able to export mathematical equa-

tions in TEX, but that, to be really useful, they ought

to be able also to import such equations and, more
generally, any TEX or Q X file. And t h s is much

more difficult, since t h s means that the equation

editor must contain almost all the capabilities of the

TEX compiler.
With AST$, mathematical equations and most

local formatting commands are supposed to be writ-

ten in native TEX. Some simple local commands that

Framework is able to display, such as italics, bold,
indices and exponents, can be translated automatic-

ally by AST$. It provides also on-line hypertext help

and a multi-level assistance in typing LATEX code, in

particular by generating automatically environments

from a hierarchical menu (see Lavaud, 1992).

Previewing portions of text. In the absence of a

satisfactory WYSIWYG editor able to import TEX and

IF@X files, a good front end to TEX must be able at

least to preview any portion of text with one or a
few keystrokes (Siebenmann, 1992). This has been
possible for quite a long time with emacs. This is

possible also with AST$ (see Figure 3). It is further

possible to preview the text contained in a selected

subset of windows, as appears in Figure 4.
As Laurent Siebenmann has emphasized, the

mechanism is very simple, but it seems very under-

used. For example, the question "How can I trans-
form m y Wordperfect files to T@ or BT@' is asked
very often on the net. Now, with Wordperfect, math-

ematical equations are typed in the eqn language

and are debugged exactly as indicated in Figure 3.

So, instead of trying to transcode from eqn to TEX,
it would be much more efficient to write and debug

equations directly in TEX. A program, written in the

programming language of Wordperfect, that would

implement the above mechanism would certainly
solve many problems. More generally, this mech-
anism could be implemented very easily into many

word-processors, so that files in native TEX could be

typed and debugged from these word-processors, in-
stead of being translated by an external program,

so that users accustomed to a given word-processor

can take advantage of TEX from withn their favorite

editor. So, although the mechanism is fairly trivial,

let us describe it in some detail for the PC.
The editor needs only to be able to save a se-

lected portion of text into a file, shell to DOS and

run an external program. A prolog and a trailer have
to be added to the selected text: t h s can be done

either inside the editor, if it is able to concatenate

chains, or during the shell by adding \i nput pro-

l o g and \ i npu t t r a i 1 e r at the beginning and at

the end of the file containing the text, with the DOS

copy instruction.
This results in previewing a portion of text by

switchng from source text in full screen to the pre-
viewer in full screen, and back again to the editor.

A more elaborate way is to display code and result
simultaneously as in Figure 3. This is obtained by

coupling the preceding mechanism to the multitask-

ing properties of Desqview or OS/2. With Desqview

for example, instead of running the previewer dir-
ectly during DOS shell, you have to run the share-

ware utility dvexec, telling it to create a child win-

dow and to run the previewer in it. This is done by
running a batch program containing a line such as:

dvexec c : \dv \ tp -p i f .dvp

where t p - p i f .dvp is a file created by Desqview,

which contains the parameters to run the TEX pre-

viewer.

1 chcument with a simple hrmula : U P

Figure 3: Displaying a portion of text with AST$: the

text selected with the mouse or the key arrows, is

displayed automatically in a child window by typing

a single keystroke (a1 t-A).

The prolog and trailer attached to the current

document have to be stored somewhere, in external

files or inside separate windows, according to the
capabilities of the editor used. The prolog must con-

tain all the necessary definitions. For example, if we

want to preview the chemical formula:

$$

\ethene{$CH-2 O H $ } { $ R A Z $ } { $ R A ~ $ } { $ R ~ ~ $ }

$ $

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Michel Lavaud

with the ChemTEX package, the prolog must contain
at least the instructions:

\documentsty1 e [chemtex] { a r t i c l e }

\begi n{document)

The prolog must also contain personal macros that
are used in the document. The trailer must contain
at least the \end{document) instruction for LATEX, or
\bye for TEX.

With ASTEX, since many individual documents
may be ~ t o r e ~ i n s i d e the master document, each may
have a special prolog/trailer. These are stored in
windows that immediately precede/follow the sub-
tree that contains the text of the document.

Preprocessor of LATEX structure. When you write
a long document, you have to modify its structure
very often. Local commands, such as \it, \i ndent,

mathematical formulas, etc. remain unchanged. But
global commands such as \chapter or \ sec t i on

must usually be modified: for example, if a long sec-
tion is becoming too big and has to be transformed
into a chapter, all \subsect ion commands must be
transformed into \sect ion, etc.. . . T h s may re-

matically erased, and the message "Instruction
\section forbidden" is displayed on the screen.

Therefore AST$ plays the role, at the front end
level, that is fulfilled by SGML parsers at the back end
level.

Exporting a LATEX document. Let us consider the
document of Figure 4 (whlch corresponds to the art-
icle by Lavaud, 1991):

quire modifying many LATEX sectioning commands,
which may be very error-prone if these are scattered
among several files. Figure 4: Example of an article, in the Table of Con-

With AST$, YOU do not have to modify section- tents

ing command;; because you never write any of them.
Any modification in the structure of the document is
made within Framework, and sectioning commands
are automatically generated by ASTEX from the tree
of the Framework document.

Implementing some functionalities of SGML pars-
ers. SGML is the IS0 standard for document descrip-
tion. It is designed specifically to enable text in-
terchange (van Herwijnen, 1990). Although SGML is
not very well adapted to everyday research work,
many of its ideas are very important and of general
scope, and can be implemented fruitfully into TEX-
based software. For example, an important function
of SGML parsers is to ensure that a document has
no chapter inside a section. This possibility is not
forbidden by LATEX: if we want to write "Hello every-
body!" in large letters in the middle of a paragraph,
it is possible to do it by including the instruction:

\ s e c t i onq{Hel l o everybody! 3

With AST$, it is impossible to create an ill-
structured document, for two reasons:

1. Sectioning commands are generated automatic-
ally from the tree of the document (cf. preceding
section);

2. Writing sectioning commands in text is inhib-
ited: if we type \ sec t i on in the text, it is auto-

When AST$ is asked to create a I Q X file from it,
it generates the document of Figure 5 . We see that
AST$ does not blindly export the whole document: a
lot of windows have been eliminated. When the doc-
ument is displayed as in Figure 4 (title of first section
in boldface, other titles in normal characters), it is
configured for debugging only the first section of the
article.

To illustrate further the great flexibility of AST$
in creating LATEX documents, let us just indicate that
the master document of Figure 4 manages several
thousand files; nevertheless when going from the
state of Figure 4 to Figure 5 , AST$ has exported only
a small part of one file linked to the document; and
it could have exported as easily small selected (non-
consecutive) parts of several files.

The Tool Box of AST$

ASTEX contains a Tool Box that automates access
to general internal or external resources, independ-
ent of the current document. Internal resources
are, for example, agenda, alarm, frequently used
databases.. .). External resources are in general
batch programs, to run external PC programs in a
customized environment or to send UNIX requests
to the server. All resources are accessible from the

242 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Multi-windowing environments for TEX

Figure 5: Document with W&X sectioning com-
mands, generated by AST$ from the document of
Figure 4.

Tool Box exactly as any item in a hierarchical system
of menu. They are activated by pointing to an expli-
cit title instead of typing the name of a program.

Porting AST$ to other software

AST$ has been developed on the top of Framework
because, at the time when the project began (19901,
this commercial program was the most suited to our
purpose, whle public domain editors available on
PCs were not powerful enough. In particular, emacs
was not available in its complete version.

Many functions of AST$ can be implemented in
other software, either PD or commercial, provided it
has a powerful enough programming language. We
enumerate the main possibilities offered by Frame-
work that are used by ASTEX, to indicate the pre-
requisites for such a porting.

Why use Framework?

Framework offers a hierarchical multiwindow-

ing system for the three basic applications:

- editor of text,

- spreadsheet,

- database manager.

It has a very powerful programming language,
which allows us to program very complex ap-
plications. This language is identical in all ap-
plications (when using specialized programs,
you have to learn several different languages).

It is ideally complementary to TEX: each applic-
ation is much more rudimentary than a special-
ized program (e.g., the spreadsheet module as
compared to Excel), but most possibilities that
are missing are added by its coupling with TEX,

and many more are added that may not exist
in the specialized program. For example, math-
ematical formulas cannot be written in cells of
Excel, while this can be done with Framework +
TEX (of course, t h s could also be done by coup-
ling Excel to TEX).

Telecommunications can be done in a window,
with the possibility to cut and paste text to and
from other windows containing text, worksheet
or database.

The three basic applications run much faster
than an equivalent set of programs under Win-
dows 3.1, and the multi-windowing system for
the basic applications, combined with multi-
windowing facilities of Desqview or OS/2, is
much more powerful than that whlch can be
obtained with Windows 3.1.

Framework also has several other advantages: it

runs on any PC, occupies only about 2 Mbytes on
disk, and it has some interesting built-in possibilit-
ies (spell-checker, synonyms, mailing, etc.).

Porting ASTEX to GNU emacs. Our dearest wish
would now be to port AST$ to GNU emacs. Indeed,
the complete version of emacs, with its Lisp-like pro-
gramming language, has been ported to OS/2. This
is still a limitation, because t h s requires a PC386
and large disks, but hardware prices are going down
very fast and older models will disappear soon.

Porting AST$ to emacs would be desirable for
many reasons. First, it is public domain, well-
supported and widely used. Second, since Frame-
work is a commercial program, some of its short-
comings cannot be solved. For example, although
Framework is mouse-based, no control of the mouse
is provided by its programming language. Since
the code of Framework is not public domain, t h s
makes programming the use of the mouse wiith
AST$ very difficult. Many other problems cannot
be solved neatly for the same reason. For example,
we could only forbid typing \ sec t i on { } but not
\ sec t ion { } , because only the space character is
considered as an end of word, in the automatic sub-
stitution function of Framework. T h s fairly stupid
limitation could be solved in a few lines of code with
a public domain editor.

Conclusion

We have proved, by building the program AST$, that
it is possible not only to make the use of TEX and
related software easy on low-cost PCs, but also to
build a powerful multi-window environment that is
adapted to scientific research and based on TEX.

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting 243

Michel Lavaud

For AST$ to be useful in practice (not only as

a model), it ought now to be ported to other more
widely used commercial software and above all to

public domain editors, in particular to emacs.

Bibliography

Dol, Wietse, Eric Frambach, and Maarten van der

Vlek, MAPS 93.1, pages 53 - 57, 1993.

van Henvijnen, Eric, Practical SGML, Kluwer, 1990.

Lavaud, Michel, EuroTH91 Conference Proceedings,

pages 93 - 116, 1991.

Lavaud, Michel, EuroTH'92 Conference Proceedings,

pages 307- 330, 1992. Reprinted in MAPS 93.1.

Siebenmann, Laurent, EuroT~X'92 Conference Pro-

ceedings, pages 43 - 52, 1992.

Taylor, Phlip, EuroT~X'92 Conference Proceedings,

pages 235 - 254, 1992. Reprinted in MAPS 93.1.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Minato Kawaguti

the still haunting problem of availability of fonts
other than the Computer Modern.

With regard to non-alphabetic languages of
which Japanese is one, the issue of fonts is more
serious. The significant cost overhead associated
with the Japanese PostScript fonts, and also the
penalty of speed of PostScript printers in the past in
dealing with these fonts, could have influenced the
current proliferate use, among TEX users, of non-
PostScript printers equipped with resident scalable
fonts for the language.

Extended Functionality

The major objective of the development of the
DVI driver to be described (henceforth denoted as
the Driver for short), therefore, is to bestow the
non-Postscript printer with the following extended
features so that it can cope with the variety of un-
orthodox needs likely to be encountered in printing
TEX documents written by some of the demanding
users.

Figures. Insertion of figures in a TEX text should
be performed in the standard manner. The figure,
described in a separate file in the PostScript form,
should be allocated at the specified location in the
prescribed size. The image figure based on a bitmap
file should also be included in the TEX document.

Fonts. It should be possible to mix the fonts in
a multitude of formats, including pk fonts and
standard PostScript fonts.

Ornamentation. For broadening the area of TEX
application, it is highly desirable to add ornamental
power of decorative expression beyond the stand-
ard TEX capabilities. Among others the following
features are particularly noteworthy:

character hghlighting for instruction manuals;
inclusion of half-tone shaded boxes for gener-
ating various forms;
artistic fonts for cover pages of books and
manuals;
distinct taste or appeal of formal letters through
the choice of adequate fonts; and
eye-catchng special effects design for posters.

Basic Driver Action

The way the Driver prints the information in a DVI
file can be summarized as follows:

1. The Driver translates the information in a DVI
file into the 'native' control codes of the printer.

To insert a figure, the content of the specified
PostScript file is interpreted by a slightly modi-
fied version of GNU'S Ghostscript interpreter as
a filter.
It deals with a large variety of fonts by obtaining
the glyph data from the files on a multitude of
media, including compact discs.
Various kinds of character ornamentations are
performed for special effects whde printing by
TEX. The Driver receives the command specific
to the printer through the 'special' command
of TEX.
It manages the buffer memory of the printer
while downloading the glyph data.
It generates the missing pk fonts, if necessary,
from the m f files, or from PostScript Type 1
fonts.
It can maintain the size of the dynamic font
directories below the upper bound specified by
the system administrator.

Applicable Fonts

Four different kinds of fonts can be freely inter-
mingled while typesetting:

1. pk fonts;
2. scalable fonts resident in the printer;
3. scalable fonts for emulating typesetters; and
4. scalable fonts in (encrypted) PostScript Type 1

format.
The Driver determines whch font data among the
actually implemented ones in the host computer or
in the printer are to be used for each font specified
in the DVI file, by looking at the font table whch
describes the correspondmg relationship between
them.

pk fonts. There are three categories of pk files,
reflecting how they are generated:

1. pk fonts generated from m f file by METAFONT,

2. pk fonts created from PostScript font (typically
Type 1 format font), and

3. pk fonts which have no corresponding generic
data file mentioned above.

These fonts are located in three separate font
subdirectories for ease of maintenance.

The standard TEX fonts, including Computer
Modern, Computer Concrete, and AMS Euler, belong
to the first category. The Driver presumes that
the pk file of t h s category is always available. If
found missing, the Driver immediately trips to the
automatic font generation procedure to be described
later.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Versatile TEX Device Driver

The pk fonts of the second citegory are those
generated mostly from the Type 1 format Post-

Script fonts. If the Driver discovers that the

needed pk font of t h s category is missing while

the corresponding Type 1 format file exists, the

automatic font generation process is activated.

The pk font of the third category does not have

its associated generic file. Some of the Japanese
character fonts in wide use belong to t h s category.

The pk glyph files in the directories corres-
ponding to the first two categories may be erased,

if necessary, during the autonomous management

of the disk space, whereas the files in the th rd
category should never be erased.

Resident scalable fonts. The printer has some

number of fonts as resident scalable fonts. When
two optional font cards are mounted to the LIPS

version of printer, for example, the Driver utilizes

at least nine scalable fonts simultaneously, namely

Dutch, Swiss, Avant Garde, Century Schoolbook,

Bookman, Zapf, together with three standard Japan-

ese typefaces, that is, Mincho, Square Gothic, and
Round Gothic.

Scalable fonts for emulating typesetters. The font

glyph data described by Bezier curves in conform-

ance with a subset of PostScript language constructs

are also available. They are derived from the pro-
prietary fonts originally developed in Ikarus format

for some of commercial typesetters. (As such they

are not in PostScript font format.) Although t h s
type of font is not necessarily in wide circulation,
there are occasions when one wishes to simulate

the typesetter with a local printer. Publishers and
authors might be able to enjoy improved mutual
communications.

Outline font data are sent to the printer after
translating into the control language of the printer.

PostScript Type 1 format fonts. The fonts in t h s

category can be used in two different ways:

1. The first method converts the data into pk

format in advance, as described before, and
then uses it as the pk font.

2. The second method converts the content of

the Type 1 format data into a sequence of

plain PostScript commands by means of the

decryption algorithm as specified by Adobe

Systems, Inc., and then sends it to the printer

just as described for the plain PostScript fonts.
The advantage of the first method is its printing

speed. It i s best suited for routine use or for

printing a document of significant volume. Since
xdvi can display any pk font on the X-window screen,

t h s scheme permits brisk and efficient previewing

as well. In contrast, the second method sports

the advantages of a scalable font. For example,
gray scale i rhng is possible only when the second

method is used.

Gray Scale Inking

Whereas in standard documents there is no partic-

ular need for printing glyphs with anything other

than solid black mk, the introduction of gray scale

inking to TEX offers the following merits:

1. It adds slightly more artistic flavor to typeset-
ting, whle balancing optical reflectivity of the

entire page by making a glyph of a significantly

large size font look milder.

2. Controlled level of emphasis may be given to
each character of a string.

Glyphs of scalable fonts may be filled with any of

the hundred grades of gray scale, ranging from pure

white to solid black, with or without superimposing
its contour line.

Since the inking on the glyph is treated logic-
ally as opaque, a glyph of lighter inlung may be

superimposed on top of a darker background.

Filling with Patterns

The printer under consideration is equipped with
a primitive command whch fills the local region

enclosed by a closed circuit such as one element of

a glyph. The filling is not limited to a homogeneous

gray. Any of the 64 textural filling patterns the
printer can generate, in addition to the 100 homo-

geneous gray scales, may be equally applicable. In
what follows it should be understood, therefore,
that the word 'fiiling' refers both to gray scales and

to textural patterns without any distinction.

Other Character Ornamentations

For printing instruction manuals covering subjects

associated with the screens of computer terminals, it

is customary to reproduce the highlighted character

strings displayed in reverse video mode faithfully

on a printed page. The Driver can perform the

character black/whte reversing for t h s purpose.

Character shading may be a milder alternative

of emphasizing character strings. Any of the filling

patterns may be specified for the shading.

Drop shadowing (shadow characters) may offer
the effect of somewhat artistic flavor. This can

be accomplished by adding an arbitrary depth and

pattern of shadow to each character.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Mmato Kawaguti

To create various kinds of forms, the Driver

may apply shading to a rectangular area.

Insertion of Figures

The way figures are inserted into TEX documents

assimilates the manner adopted by other existing

DVI drivers for PostScript printers.

Any file in encapsulated PostScript format
(EPSF) is qualified as a figure file. To insert a
figure, a new TEX macro is called in, whch requests

the designated file name, and as an option the figure

size as well. The Driver modifies, if necessary, the

width and the height of the figure independently so
that the size matches exactly that specified by the

macro parameters. The calculation of the magni-

fication factors is based on the data of the original
figure size contained in the header portion of the

figure file.

As a contingency measure, the Driver accepts

as well plain PostScript files whch are not in EPSF.
Since no rescaling is performed in this case, it

is the user's responsibility to adjust beforehand

the figure size to the parameters specified in the
macro parameters. This extra option is to safeguard

dedicated TEX adherents from the confusion in

discriminating between the two PostScript formats.

A bitmap pattern, such as a dumped-out copy
of an X-window screen, may also be included into

a document. In most cases, however, bitmap

data converted to EPSF is preferred because of the
auto-scaling feature mentioned above.

Automatic Font Generation

If the Driver discovers that any of the pk fonts
specified in the DVI file are missing, it generates

the missing pk font automatically, provided that

(1) the corresponding m f file exists, or (2) the

font table registers the font to be generated from

the corresponding PostScript Type 1 font and the
PostScript font file actually exists.

In the first case, the Driverfirst activates virmf ,

which is a tool of METAFONT, to generate the pk

file on the spot from the m f file, and then resumes

the suspended printing work by using the newly
created font, in the same way as dvips, and also

xdvi, do in a similar situation.

In the larter case, it creates the pk file automat-

ically with the help of GNU'S Font Utilities, and then

comes back to the suspended job again just as it
does whde worlung with m f files.

This feature, which helps reduce the chance of

failure resulting from lack of fonts, will be found

effective when printing jobs are queued across the

network.

Processing Speed

The speed of printing is as important as the quality
of output from the utilitarian point of view in daily

service. Since the printer's internal buffer memory

for storing font glyphs is limited to typically 6 MB

in size, the Driver gives higher priority to the more
frequently used fonts. The selection algorithm

for the font registration checks the font size, the

classification of the nature of font, and the statistics

on the frequency of request in the past.
The speed of printing is greatest when the

Driver uses the fonts which have been registered

in the printer memory through the previous font

downloading.
Because of the sheer volume of font data,

printing Japanese documents is much more critical

compared with the case with alphabetic fonts. Each

Japanese font consists of 7285 characters. Without
an adequate policy for the selection of font regis-

tration, precious resources will be used up quickly
by fonts with less urgent needs, thus resulting in

serious degradation of the performance.

Since the interface of the printer in use by the

host computer is limited either to Centronics format
or to RS232C, time spent in transmitting the glyph

data governs the overall printing speed. Therefore

it is extremely time-consuming to transmit each of
the glyph data of fonts in frequent use from the

host computer without storing them in the printer

memory.
So as to boost the printing speed, the glyph

data of the resident scalable fonts may also be
registered into the buffer memory. Whde using

multiple Japanese fonts, however, there occurs

occasionally a situation when the amount of font
data exceeds the volume of the buffer memory.

In these circumstances, use of the resident fonts

without registration can be a good compromise

because it eliminates at least the time loss due to
the glyph data transfer.

Compatibility

To eliminate system dependencies as much as

possible from TEX source files while using the newly
added extended features (gray scale inking, pattern

filling, and character ornamentation), a style file

whch contains the related macros definitions is
included in the (E)TEX source files. Under the

premise that these features are universally welcome

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Versatile TEX Device Driver

by a broad spectrum of the audience, it is hoped

that TEX source files can attain a certain degree

of system independence when the other printer

drivers eventually incorporate their respective style
files sharing the common format for these macros.

Evaluation

The Driver has been tested successfully with all

models of laser-beam printer whch were available

for evaluation: Canon's B406S, A304E, A404E, and

B406G. All of them are supported with the LIPS

control language.

The measurement with the printer controlled
by a 32-bit RISC c h p at 600 dpi internal resolution

(B406G) indicates that the printing speed reaches

nearly the speed governed by the printer's paper

handling rate for typical TEX documents without

figures.
The average time needed to create a new pk

font from a PostScript Type 1 font is about 20

seconds with a typical workstation, Sony's NWS-

3860 (CPU: R3000 at 20MHz). Incidentally, it took

slightly less than 19 hours to generate, in a single

batch, seven standard sizes (10 pt and its assorted
six magnifications up to \magsteps) of the pk fonts

each for the entire 500 typefaces contained in URW

TypeWorks compact disc. The generated 3500 pk

files occupy 31 MB of disk space.

A full-page sample output is reproduced in the

Appendix. To demonstrate the Driver's ability of
font handling and character ornamentation, a some-

what chaotic melange of fonts in various formats

and sizes have been selected. It is hoped that the

base font size as 20pt, or in part \magstep3 of
10pt, is large enough to make the finer detail of

decorative features of the original 600 dpi output

reproducible after printing.

It is emphasized that no PostScript processing

is involved in generating t h s sample page. It

simply generates the intrinsic command codes of
the printer.

Implementation and Availability

The Driver is written entirely in C language. The

total amount of source files of the current version
is 190 Kb, or 8570 lines, excluding files associated

with fonts data. It can be compiled using GNU's gcc
compiler.

The standard TEX environment of Unix is the

minimum prerequisite for porting the Driver. With

t h s basic environment, printer-resident scalable
fonts with ornamenting capability, together with pk

fonts, can be used. In addition, GNU's Ghostscript

has to be available in order to include figures in

EPSF format. Likewise, GNU'S Font Utilities is needed

to deal with PostScript Type 1 fonts.
A revised version, whch is currently being

developed with improved portability and ease of

maintenance in mind, will facilitate easier imple-
mentation on various Unix platforms, including

4.3BSD, OSF/1 and SunOS. T h s version, after sub-

sequent field tests, will be available as free software

by accessing, through anonymous ftp, the directory
/ f tp -serv i ces/TeX-dri ver

at the address

i l nws1 . f u i s . f uku i - u .ac . j p (133.7.35.53)

Conclusions

With the DVI driver for non-Postscript printers, the

following assets have been realized:

A variety of fonts can be incorporated, includ-

ing pk fonts, resident scalable fonts of the printer,

and PostScript Type 1 fonts. As a part of perform-

ance evaluation, the Driver has been put into daily

service incorporating, among others, 3500 pk fonts
(500 distinct typefaces, each in 7 sizes) generated

from a single CD-ROM of PostScript Type 1 format

fonts.

Esthetic features and visual appeal, essential

in certain kinds of documents, can be realized

conveniently with the knowledge of TEX alone. Char-
acter ornamentation, such as filling glyphs with

a pattern, drop-shadowing, black/whte reversing,

and outlining, can be acheved without recourse to
other technology, such as PostScript.

The insertion of figures by means of an encap-

sulated PostScript format file has been realized. The

identical format to that used in PostScript printers

has been acknowledged for compatibility.

Acknowledgements

The author acknowledges Ken-ichi Sugimoto, At-

sushi Takagi, and Tetsuto Sakai for their effort in

coding most of the software as part of their graduate

study. He thanks Canon Corp. for offering printers

for field evaluation. UR W TypeWorks compact disc,
used as the major source of PostScript Type 1 fonts,

was supplied by Seaside Software Inc., Chgasah,
Japan. Special scalable fonts for emulating typeset-

ters were supplied by Heidelberg PMT Co., Ltd., and

also by Dainippon Printing Co., Ltd., both in Japan.
The Driver is indebted to various existing tools

in one phase of its operation or another: Ghostscript
and its adaptation to LIPS printers, dvips, dviZps,

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 249

Minato Kawaguti

Font Utilities, and METAFONT. Appreciations to

their respective authors should be due in letting

their tools be widely available.

Bibliography

Adobe Systems Inc. Adobe Type 1 Font Format,
Addison-Wesley, 1990

Berry, Karl, and Kathryn A. Hargreaves. "Font utilit-

ies" version 0.6, 1992

Cooper, Eric, Bob Scheifler, Paal Kvamrne, HBvard
Eidnes, Mark Eichin, Paul Vojta, Jeffrey Lee, Donald

Richardson, et al. "xdvi on-line manual", 1992.

Deutsch, L. Peter. "Ghostscript 2.6.1", 1993.

Knuth, Donald E. The METAFONTbook, Addison-
Wesley, 1986.

Rokicki, Tomas. "DVIPS: A TEX Driver".

Sagiya, Yoshteru, Hirosh Ishi, Hajime Kobayash,
Ryouichi Kurasawa, and Hisato Hamano. Japanese

T@ Technical Book I , ASCII Corp., 1990.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Versatile TEX Device Driver

Selection of solid black, 50% gray scale, and

outlined wre white inkina at 30 ~ t : CheZ-
V

tenham ~!Ti~m~8e,
~ ' U D f & 3 3 @ may be su erirnposed to the gray

Mflh %/,///h P

patterns for 50 ~t Bcruhaus. [Font: Avan t Gardel

expressing the inverted video display on the CRT
screen.

Character Shading works for mild emphasis or

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Typesetting Catalan Texts with TEX

Gabriel Valiente Feruglio
Universitat de les Illes Balears

Departament de Ciencies Matematiques i Inforrnatica

E-07071 Palma de Mallorca (Spain)

Internet: dmi gvaO@ps . u i b . es

Robert Fuster
Universitat Politecnica de Valencia

Departament de Matematica Aplicada

Cami de Vera, 14. E-46071 Valencia (Spain)

Internet: mat5rf c@cci . upv . es

Abstract

As with other non-American English languages, typesetting Catalan texts

imposes some special requirements on TEX. These include a particular set of

hyphenation patterns and support for a special ligature: unlike other Romanic

languages, Catalan incorporates the middle point in the 11 digraph. Hyphenation
rules for Catalan are reviewed in t h s paper, after a short introduction to

hyphenation by TEX. A minimal set of hyphenation patterns covering all Catalan

accents and diacritics is also presented. A discussion about the 1'1 ligature

concludes the paper. This work represents a first step towards the Catalan
TLP (TEX Language Package), under development within the TWGMLC (Technical

Working Group on Multiple Language Coordination), where the first author is

chairing the Catalan linguistic subgroup.

Re sum

Aixi com en altres llengiies, la composicio de textos escrits en catala demana

requeriments especials a1 TEX. Aquests inclouen un conjunt particular de patrons

de guionat, aixi com suport per a un lligam especial ja que, a diferencia d'altres
llengiies romaniques, el catala incorpora el punt volat a1 digraf I'l. En aquest

paper es fa una introduccio a1 guionat arnb TEX i es revisen les regles de guionat

per a1 catala. Tanmateix, es presenta un conjunt minim de patrons de guionat

que cobreix tots els accents i marques diacritiques del catala. El paper acaba amb

una discussio sobre el lligam 1'1. Aquest treball representa un primer pas cap a1
TLP (Paquet de Llengua TEX) catala que s'esta desenvolupant dins el TWGMLC

(Grup Tecnic de Treball sobre Coordinacio de Multiples LlengLies), on el primer

autor presideix el subgrup 1inNistic catala.

Hyphenation by TEX

Background on hyphenation by TEX is first presen-

ted, following the ninth edition of The Tgbook
(Knuth, 1990) and the exposition in Haralambous

(TUGboat, 1990). The actual hyphenation algorithm

used by TEX is due to Liang (1983).

When TEX creates a format file like pl a i n . fmt,
1 pl ai n . f m t or amspl ai n . fmt, it reads information

from a file called hyphen. t ex (or *?:hyphen. tex,

where *?: is a two-letter language code1 (see Har-

alambous, T@ and TUG NEWS, 1992)) that contains

the hyphenation patterns for a specific language.

Using TEX~+, a format file can include more than
one (up to 256) sets of patterns and, so, I N I T E X

produces multilingual versions of TEX. In this case,

language-switchmg mechanisms like those of the Ba-

bel system by Johannes Braarns allow TEX to typeset

every language according to its own rules. A syntax

In the Catalan case, the name of this file will be

cahyphen. tex.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Typesetting Catalan Texts with TEX

for language-switchng commands has not yet been
standarized, but it is expected to be something like

\l anguage{catal an}{ . . .Cata lan t e x t . . . }
for short inserts and

\begi n i l anguage}{catal an}
. . .Catalan t e x t . . .
\end{ l anguage}

for longer inserts.

Hyphenation patterns are clusters consisting of

letters separated by digits, like x l y 2 z (more exactly,
a pattern has the form

number/letter/number/letter/ ...I number

like Oxly2z0 , but the number 0 can be suppressed),

meaning that:

If the set of patterns is empty, no hyphenation

takes place.

If there is a pattern x l y , then hyphenation
"x-y" will be possible in every occurrence of
the cluster "xy". If the pattern is xlyzw, then
the sequence of letters "xy" will be hyphenated

only when followed by "zw".

If there is a pattern x l y and a pattern x 2 y a b c

then the sequence "xy" will be hyphenated, as

long as it is not followed by "abc". The digit
2 indicates therefore an exception to the rule

"separate x and y" expressed by the digit 1 .

The same holds for greater numbers. Patterns

with number 3 will be exceptions to patterns

with number 2, and so on: odd numbers allow

and even numbers disallow hyphenation, and
the maximum decides.

A dot in front of (or behnd) a pattern, such

as . x l y or x y 2 z . specifies that the pattern is
valid only at the beginning (or at the end) of a
word.

In t h s context, a letter is a character of category

11 or 12 whose \I ccode is nonzero. Because, for
almost all Latin-alphabet languages, some diacriti-

cized characters are letters for which we need a
mechanism, including these special characters as
letters. Using TEX~+, whch allows 8-bit input, this
problem disappears.

Despite the existence of some fundamental
rules, hyphenation of a particular language can

be very complicated. There are two methods to
handle t h s complexity: hldden mechanisms of

hyphenation can be investigated and patterns made

to correspond to the analytical steps of manual

hyphenation, or patterns can be induced from a
sufficiently representative set of already hyphenated

words, using inductive inference tools tailored to
this particular problem such as PATGEN.

The choice of method depends on the nature
of the language and on the size of the available set

of hyphenated words. Although in theory such a
pattern generator would produce an exhaustive set

of patterns from a file containing all words of a

particular language in hyphenated form, it is more

probable to have partial sets of hyphenated words,

and the pattern generator will only produce more

or less accurate approximations.

The authors have chosen the first method for
Catalan. Besides hyphenation patterns, the effort
resulted in more systematic and exhaustive rules for

Catalan hyphenation than those found in grammar
textbooks.

Catalan Hyphenation Rules and Patterns

Modern Catalan normative grammar was estab-

lished by Pompeu Fabra and ratified by the Insti-
tut d'Estudis Catalans (Catalan Studies Institute) in

191 7. Orthography (and in particular syllabification

and hyphenation rules) can be found in many texts:

Bruguera (1990), Fabra (1927), Mira (1974), Pitarch
(1983), Salvador (1974), and many others. The

official normative dictionary is Diccionari general
de la llengua catalana (Fabra, 1974) and Diccionari
ortografic i de pronuncia (Bruguera, 1990) is a hy-

phenation dictionary. A very interesting study of
some difficulties in the Catalan orthography can be

found in Sola (1990). Some of our observations on
Spanish, Italian or French hyphenation were sugges-

ted by the preceding references, but also by Lazaro

(1973) and Beccari (1992).

Catalan, like other Romanic languages, bases its
hyphenation rules on the syllabic structure of words.

T h s structure, as far as Catalan is concerned, is

closely related to Spanish, Portuguese or Italian. But

there exist a number of differences: for example,

the Catalan word Valencia has four syllables and
the Spanish Valencia has only three.

Of course, the Catalan alphabet follows the

standard Latin alphabet. The letters k and w never

appear (except in foreign words), the letter y is

only used to form the digraph ny and letter q only

appears followed by letter u.
In general a Catalan word has as many syllables

as it has vowels, either separated by consonants or
contiguous but not forming diphthongs. In fact, a
Catalan word has exactly as many syllables as it has

vowels, but in some special cases, letters i, u are not

vowels (Catalan vowels are a , e, i, o and u). Word
stress, however, determines how a Catalan word

breaks up into syllables and, in some polysyllabic

words, is expressed by an accent on the vowel of

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 253

Gabriel Valiente Feruglio and Robert Fuster

the stressed syllable. In this way, accents in Catalan
are used in nearly the same way as in Spanish. Also
as in Spanish, the accents perform another diacritic
function (to distinguish some homophones, as dona
= woman and dona = he/she gives). However, the
kind of accent, grave (') or acute ('), marks the
difference between open and closed vowels, as in
French or Italian: so, all accented vowels are a, e , e ,
i, 0, 6 and u. The diaeresis ('), over i or u, splits a
diphthong or causes the letter u to be pronounced
when g or q precede it.

The cedilla under the letter c (c) and the
apostrophe (') are usual in Catalan, with the same
use as in French. Virtually all European languages
have their own particularities: Catalan has the
special construction 1'1.

Syllabification. Basic rules for word division into
syllables include the following (v, v,, n r 1 will be
vowels and c, c,, n 2 1 consonants).

1. A single consonant between two vowels forms
a syllable with the vowel that follows it: VI-CVZ.
Actually it suffices to consider patterns of the
form -cv, because if another consonant (instead
of the first vowel) precedes c the pattern would
also be C I - C ~ V (see rules 2, 3 and 5 below). The
necessary patterns will be:

lba lbe lb i lbo lbu
l c a Ice l c i lco lcu
lea lqo lqu
Ida lde ld i ldo ldu
l f a l f e l f i l f o l f u
lga lge Lgi lgo lgu
lha lhe lh i lho l h u
l j a l j e l j i l j o l j u
l l a l l e l l i 110 111.1
Ima lme lmi lmo l m u
Ina lne ln i lno l n u
lpa lpe lp i lpo lpu
I r a I r e l r i l r o l ru
l s a l s e l s i l s o l s u
l t a l t e lti l t o l t u
l va lve lv i lvo lvu
lxa lxe lx i 1x0 lxu
l z a l ze l z i lzo lzu

lba lbe lbe lb i lbo lbo lbu
l c a Ice Ice l c i lco lco lcu
lqa 1qo 1qo lqu
Ida lde lde ld i ldo ldo ldu
l f a l f e l f e l f i l f o l f o l f u
lga lge lge lg i lgo 1go lgu
lha lhe lhe l h i lho lho lhu
l j a l j e l j e l j i l j o l j o l j u
11a 11e l l e l l i 110 110 l l u
lma lme lme lmi lmo lmo l m u
l n a lne lne ln i lno lno l n u
l p a lpe lpe lp i lpo lpo lpu
I r a I r e I r e l r i l r o l r o l r u
l s a l s e l s e lsi l s o l s o lsu

l t a l t e l t e l t i l t o l t o l t b
lva lve lve lv i lvo lvo lvu
lxa lxe lxe lx i 1x0 1x0 lxu
l za l ze l ze l z i lzo lzo lzu

Of two consonants standing between two vow-
els, the first forms a syllable with the preceding
vowel and the second forms a syllable w t h
the vowel that follows it: V ~ C ~ - C ~ V Z . Because
the preceding patterns allow this break, we do
not need special patterns for t h s rule. But
one exception to t h s rule is that the liquid
consonants, 1 and r , when preceded by certain
consonants, form a syllable with this consonant
and the vowel that follows. Another exception
is that there are some special combinations,
called digraphs, that represent only one phon-
eme or a geminated one. The complete list is:
ig , i x , 11, 1.1, ny, r r , ss, tg , tj, t l , t l l , t x ,

t z . The digraph i g only occurs at the end of a
word (and in plural form, i gs).

The two following rules exactly define
these exceptions.
The combinations c-1 and c-r that cannot be
hyphenated are bl, c l , f l , gl , pl, br, c r , d r ,
f r , gr and pr. The necessary patterns will be:

lb2l lc2l l f2 l lg2l lp2l
lb2r l c2 r ld2r l f 2 r lg2r lp2r l t 2 r

The combination v r is another one that cannot
be hyphenated, but it appears only in a few
toponyrnies.
The digraphs 11 and ny are not split (following
an etymological criterium). The pattern

121

voids the effect of the first rule. No analogous
pattern is necessary for ny. In fact, ny and
11 correspond to single consonant sounds and
therefore rule 1 above applies to them as well.
The necessary patterns will be:

l l l a l l l e l l l i 1110 l l l u
111a 111e 111e l l l i 1116 1110 111u
lnya lnye lnyi lnyo lnyu
lnya lnye lnye lnyi lnyo lnyo lnyu

All other digraphs can be split. The 1'1 ligature
is also a digraph and can be divided, replacing
the middle dot with a hyphen. Hyphenation of
the 1'1 ligature is discussed in the next section.
Of three or more consecutive consonants fol-
lowed by a vowel, the last consonant forms a
syllable with that vowel: c1c2-C~V, et cetera,
unless the last two consonants belong to those
in the two rules above. No additional patterns
are necessary for t h s rule.
Compound words with one of the following
prefixes

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Typesetting Catalan Texts with TEX

an, con, des , en , ex , i n , sub, t r a n s

are divided according to components and there-

fore often constitute exceptions to the previous
rules. These differ from prefix to prefix and

present an evident problem: it is impossible,
unless you make an exhaustive classification by

scanning a dictionary, to determine if a certain

combination is or is not a prefix2 For example,

you must hyphenate in-a-pe-ten-ci-a (inappet-

ence) but e-no-leg (an expert in wine) instead of
en-0-leg. For instance, using Bruguera (1990),

we find the following patterns for .ex:

. e2xla .e2xla

.e3x2ag .e3x2am .e3x2am

.e2xlon .e2xlor .e2xlosm

.e3x2orc .e3x2ord

. e2xlul c

In all words starting with t r a n s -except in
t ransi t and its derivatives - t r a n s is a prefix.

Then, the corresponding patterns will be

Because these prefixes are very frequent in prac-

tice and-specially in technical languages-

frequently used to create new words, this

is a dangerous solution. Another possible

solution - more conservative, but completely
secure -consists of inhibiting the splitting of

such a group whenever it is present at the be-

ginning of a word (except in the case of t r ans ,
because it is a very long prefut):

To choose between these two options is still an

open question.
7. Personal pronouns nosaltres (we) and vosaltres

(you) are etymologically composed words. They

PATGEN allows an adjustment of an existing set
o f patterns; i t will read both a set of already existing

patterns and a collection of hyphenated words, and

will create a new set of patterns. This method
can be used as a combination of the analytical and

the raw PATGEN methods. For example, one could
extract all words starting with one of the prefutes

an, con, des , en, ex, i n , sub and t r ans , from a

dictionary, and run PATGEN on these and on the

existing patterns. The test function of PATGEN will
immediately evaluate if the new set of patterns is
more powerful.

must, therefore, be hyphenated nos-al-tres, vos-
a l - t r e~ .~ . The necessary patterns are:

. no2slal .vo2sla

Exceptions to the syllabification rules above are

certain groups of vowels where i or u are not really

vowels. The next sections explain these exceptions.

Descending Diphthongs. When a vowel is followed

by an unstressed i or u, t h s second letter is a
semivowel and forms a syllable with the preceding

vowel. These diphthongs are a i , e i , o i , u i , au, eu,
i u , ou and uu.

All other combinations of two vowels are di-

vided. The necessary patterns will be:

a l a a l a a l e a l e a l e a l i a10 a10 a10 a lh
e l a e l a e l e e l e e l e e l i e l o e l o e l 6 e lu
i l a i l a i l e i l e i l e i l i i l i i l o i l 0 i l o i l h
o l a o l a o l e o l e o l e o l i o lo olo 016 old
u la u la u le ule u le u l i ulo ulo u 1 0 u l u

a l a e l a e l a i l a o l a o l a u la
a l e e l e e l e i l e o l e o l e u le

i l i
a10 e l 0 e l 0 i l o 010 610 ulo

Ascending Diphthongs and silent u. When the

letters g or q come before the vowel u and another

vowel, then either the u is not pronounced or the

two vowels compose an ascending diphthong (and
the u is a semic~nsonant).~ In both cases, the
three letters belong to the same syllable and the

combination cannot be hyphenated. Then, we need

to make void some of the preceding patterns. For
the g the patterns will be:

The letter q is used only in this context and always

starting a syllable. Then the only necessary pattern
is

lqu2

Triphthongs. Yet another exception to the syllab-

ification rules above is a group of three vowels

(actually, a serniconsonant/vowel/semivowel com-
bination) that together constitute a single syllable.

The only triphthong in Catalan is uai after g or

In 1959 the Academia Espaiiola de la Len-
qua (Spanish Language Academy) revoked a similar
prescriptive ruIe. So, in Spanish you can hyphen-

ate nos-otros or no-sotros This applies also to the
Spanish hyphenation of the prelix des.

These are the only cases of ascending diph-

thongs in Catalan. It differs from Spanish and

Italian: in these two languages all combinations of
i or u with a vowel are diphthongs.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Gabriel Valiente Feruglio and Robert Fuster

q, but no special patterns are necessary because

the preceding patterns gu2a l q u 2 apply and the

combination a i is not hyphenated.

Letter i or u as consonant. Unstressed i before a, e

or o, however, becomes a consonant when situated

at the beginning of a word (even when preceded by

h), except in i o and its derivatives. The necessary

patterns will be:

. i 2 a . i 2a . i 2e . i 2e . i 2e . i 2o . i 2 0

. h i2a .h i2e .h i20

.h i2a .h i2e .h i2e .h i20 .h i20

. i 3on

Unstressed i or u standing between vowels are
consonants and form a syllable with the vowel that

follows it. The necessary patterns will be:

a l i 2 a a l i 2 e a l i 2 i a l i 2 o a l i u
e l i 2 a e l i 2 e e l i 2 i e l i 2 o e l i u
i i 2 a i i 2 e i i 20
o l i 2 a o l i 2 e o l i 2 i o l i 2 o o l i u
u l i 2 a u l i 2 e u l i 2 i u l i 2 o u l i u

alu2a alu2e a l u i a h 2 0 aluu
elu2a elu2e e l u i elu2o eluu
i l u 2 a i l u 2 e i l u i i l u 2 o i l u u
olu2a olu2e o l u i olu2o o luu
ulu2a ulu2e u l u i ulu2o

a l i 2 a a l i 2 e a l i 2 i a l i 2 o a l i u
a lu2a alu2e a l u i a h 2 0 aluu
e l i 2 a e l i 2 e e l i 2 i e l i 2 o e l i u
elu2a elu2e e l u i elu2o eluu
o l i 2 a o l i 2 e 0 l i 2 i 0 l i 2 o o l i u
0 lu2a 0lu2e o l u i 011~20 oluu
e l i 2 a e l i 2 e e l i 2 i e l i 2 o e l i u
elu2a elu2e e l u i elu2o eluu
i l i 2 a i l i 2 e i li 20
i l u 2 a i l u 2 e i l u i i l u 2 o i l u u
o l i 2 a o l i 2 e o l i 2 i o l i 2 o o l i u
o1u2a olu2e o l u i 0 1 ~ 2 0 oluu
u l i 2 a u l i 2 e u l i 2 i u l i 2 o h l i u
u lu2a ulu2e u l u i hlu20

Diaereses. In Catalan the diaeresis is used in two
different contexts: first, if an i or u - following

a vowel o r between two vowels -is a real vowel
(and in consequence does not belong to the same

syllable). But, second, in the combinations que,

gue, q u i , gui it indicates that the u is pronounced

(forming a diphthong with the following vowel).

The corresponding patterns are:

a l l e l i ili o l l u l l a l u e l u i l u o l u u l u
l l a i l e ili 110 l l u u l a u l e u l i 810 u l u
1gu2 lq i j2
U3l

The last pattern applies to a very special case:

in argiii'en and other related words appear two

consecutive diaereses (Valor (1983), p. 20).

Breaks. Catalan words may be broken into syllables

containing just one letter. Actually, only vowels

can form a syllable on their own, but some learned

words or words of foreign origin, like psicoleg or

show start with a pair of consonants: the possible
combinations are gn, mn, pn, ps, sc, sh, s l , sm,

sn, sp, s t , t s ; the only occurrence of a digraph

beginning a word is in the word txec and its
derivatives (as txecoslovac). Then, the following

patterns are necessary in order to make void the

effect of the first rule and to prevent separating
single consonants at the beginning of words:

.g2 .m2 .p2 .s2 . t 2

Also combinations like cl and br can start a word,

but then rule 3 applies and no special patterns are

required.

Finally, to prevent hyphenation of an apo-
strophe, we only need the pattern

'2h

Now we have a complete set of hyphenation pat-

terns, even if the parameters \l ef thyphenmi n and

\ r i gh thyphenmin are set to 1. Regarding t h s

question, we suggest the values

because long ending syllables are frequent in
Catalan words and then, with the default values,

very frequent words like aquests (the plural mascu-

line demonstrative) must not be hyphenated. So,
the macros involved in the Catalan language LATEX

environment should include:

\language=2 % o r the appropr iate value
\ l ccode ' \ ' = ' \ '
\nonf renchspaci ng
\ lefthyphenmi n = l
\ r i ghthyphenmi n=3

The 1'1 Ligature

All Catalan characters belong to the IS0 8859-1

coding scheme, known as IS0 LATIN-1, with only one

exception. Double 11 also exhibits a geminated form,

tl. Let us take a look at its etymology.
While some Romanic languages preserve the

phonetic distinction between I h 1 and Ill I , in par-

ticular French, Italian and Catalan, it is only in

256 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Typesetting Catalan Texts with TEX

Catalan where this phonetic distinction finds a cor-

responding orthographic distinction. For instance,

Latin INTELLIGENTIA derives into French intelligence

and Italian intelligenza, whde Latin SELL, derives
into French selle and Italian sella. Then these lan-

guages use the same orthography for two different

phonemes.
Modern Catalan uses ll for phoneme / A / and

1'1 for phoneme 1111. Then Latin INTELLIGENTIA derives

into Catalan intel'ligencia and Latin SELLA derives

into Catalan sella.

This correspondence between phonetics and
orthography is a debt to the normalization process

to which Catalan has been subject to, where Pompeu
Fabra (1984) has played a fundamental role. Early
grammar texts, however, use 1 for 11 and 11 for

H (Fabra, 1912). See Fabra (1983, 1984) and Segarra
(Historia de l'ortografia catalana, 1985) for more

details on these orthographic distinctions6.

The 1'1 ligature and DC fonts. This section is
a revised excerpt from discussions held between

Gabriel Valiente Feruglio and Yannis Haralambous

during 1992, while contributing to Haralambous'

efforts in incorporating national requirements from

different countries into the design of DC fonts.
Is it necessary or facultative (like the fi ligature)?

It is mandatory.

Is there also an "11" without dot?

Yes, there is. The "11" without dot corresponds

to a palatal sound, while the "1'1" with middle dot

corresponds to the "gemination" or duplication

of the "1" sound.
What is its uppercase counterpart?

The 1'1 ligature cannot appear at the beginning

of a word, only joining two syllables. Therefore,
the only way in whch the 1'1 must be shown

in uppercase is when the whole word is in

uppercase, and in such a case both L's are

capitalized, as the word INTEL'LIGENCIA shows.

How do you create it using TEX and/or other

word processors?
Detailed definitions for TEX are given and dis-

cussed in the next section. Many WSIWG word

processors actually support the 1'1 ligature, that

is obtained by joining two characters: an 1
with middle dot (1.) and another I. When hy-

phenation takes place, the 1. gets replaced by a

normal I.
Can it be hyphenated?

The two last paragraphs demonstrate the hy-
phenation of the 1-1 ligature, whch is discussed in

detail in the next section.

The function of 1'1 can be seen as that of

joining two syllables, one ending in "1" and the

other beginning with "1". Therefore, it can be

hyphenated, and the right hyphenation is "1-"
and "1". For instance, the word intel'ligencia

would be hyphenated as: i n-tel-1 i -gen-
ci-a. It is therefore a ligature instead of a

single character. This justifies the lack of an
I1 character in DC fonts, although a middle

dot other than TEX'S centered dot \cdot
could also be useful, besides Catalan, for other

languages as well.
What is its alphabetical order?

It does not appear in the alphabetical or-

der, because it has no extra sound, just
the mere duplication of the "1" sound.

[Comment of R. Fuster: Colomer (1989),
a Catalan-English/English-Catalan dictionary,

and Bruguera (1990) arrange cella before cetla.

But Fabra (1974), Ferrer (1973) and Romeu et

al. (1985) give this order: cel'la, cella.]
What are the local encoding schemes used?

Are there Catalan keyboards with ., 1. or 1.1

support?
A centered dot appears in IS0 8859-3 as charac-

ter OxB7, and the character combinations LATIN

CAPITAL LETTER L WITH MIDDLE DOT and LATIN SMALL

LETTER L WITH MIDDLE DOT appear in positions

Ox3F and 0x40 of row 01 (EXTENDED LATIN A)

of IS0 IEC DIS 10646-1.2. Besides these IS0
codes for middle dot, character sets for Per-

sonal Computers happen to include a special

"1." character, often in the Danish or Norwegian

code pages.
Can it appear in ligatures, like fl'l or ffN ?

No, it cannot. For morphological reasons 1'1 has

to be preceded and followed by vowel sounds.
Are there special spacing rules? Is the dot

special?

Yes, the 1's are closer to the dot than other

letters, and the dot is a normal dot but raised

approximately half the height of a vowel from
the baseline for lowercase and three times that

height for uppercase7.
When did this letter appear in Catalan printing?

' More reasonable spacing can be achieved by

raising the dot exactly the height of a lowercase
vowel, and this is precisely what has been coded

in the macro for the 1'1 ligature presented below.

Thanks to Marek Rykko and Boguslaw Jackowski

for their comments on that particular spacing con-

vention during the 1993 TEX Users Group Annual

Meeting.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Gabriel Valiente Feruglio and Robert Fuster

A. Although it was Pompeu Fabra who always
supported the idea of an orthographic dis-

tinction in correspondence with the phonetic

distinction between I h 1 and 1111, h s approach

consisted of leaving I1 for 1111 and loolung for
a new symbol for /h i . The actual ligature I'l is

due to Mossen Alcover in h s amendment to

the fourth writing of the Normes Ortografiques

(Orthographic Norms) by the Institut d'Estudis

Catalans (Catalan Studies Institute) (Segarra,

1985). The I'l ligature appeared therefore in
Catalan printing for the first time in 1913 in

Normes Ortografiques.

Choosing a macro for the 1'1 ligature. When it
comes to choosing the best character sequence for

the TEX macro producing the 1'1 ligature we realize
that perhaps we Catalan TEX users have arrived too

late, because most short combinations already have

a definition in plain TEX. Among the interesting
ones are \1 and \L, assigned to Polish letters 1 and t
and \11, assigned to the "much less than" relation
<<, whereas \LL is undefined in plain TEX.

It must be noted, however, that << only occurs

in math mode, while the 1'1 ligature is not supposed
to be typed in math mode. We have therefore
chosen \ll and \LL as character sequences for the

macro definition producing the 1'1 ligature, and have
included a test for math mode in the definition in

order to restore the original << relation when in

math mode for lowercase \11, as explained in the
next section.

The macro name \ll is submitted to the

TWGMLC for standarization.

Typesetting the 1'1 ligature. No normative exists
for typesetting the I.1 ligature and therefore quite

different kernings between the middle dot and the
two consonants can be found in modern Catalan
writings. The definitions

\news k i p\zzz
\def\allowhyphens{\nobreak\hskip\zzz}
\ d e f \ l 1 {\allowhyphens%

\d i scretionary{l-}{1}{l\hbox{\cdot}l}%
\a1 lowhyphens}

\def\LL{\al lowhyphens%
\d iscret ionary{L-} {L}{L\hbox{\cdot}L}%
\a1 1 owhyphens}

constitute a good starting point because, besides

achieving a n easy-to-read spacing, such as in il'lusio

and ILZUSIO, they produce the right hyphenation.
Middle dot is lost and 1'1 is hyphenated 1-1.

Explicit kerning can be added between middle

dot and the two consonants. Because kern is font-
dependent, some character height, width, and depth

values for the actual font in use are taken into

account in the following definitions in order to set

appropriate kerning.

\news k i p\zzz
\def\allowhyphens{\nobreak\hskip\zzz}
\newdi men\l e f t k e r n
\newdi men\ri ghtkern
\newdimen\rai sedim

\ d e f \ l l { \ r e lax \ i fmmode \mathchar"321C
\e lse
\l eftkern=Opt\r i ghtkern=Opt%
\ r a i sedi m=Opt%
\setboxO\hbox{l}%
\setboxl\hbox{l\ /}%
\setbox2\hbox{x}% -
\setbox3\hbox{.}%
\advance\raisedim by -\ht3%
\d i v i de\ra i sedi m by 2%
\advance\rai sedim by \ht2%
\i f num\f am=7 \e l se
\l eftkern=-\wdO
\d i v i de\l e f t ke rn by 4%
\advance\l e f t ke rn by \wdl
\advance\leftkern by -\wdO
\rightkern=-\wd0
\d i v i de \ r i gh tke rn by 4%
\advance\rightkern by -\wdl
\advance\rightkern by \wdO

\f i
\allowhyphevs\di sc re t i ona ry { l -}{I}%
{ \hbox{ l } \kern\ l ef tkern%

\ ra i se \ ra i sedim\hbox{ . 1%
\kern\rightkern\hbox{l}}\allowhyphens

\fi 1

\def\LL{\setboxO\hbox{L}%
\ lef tkern=Opt\ r ightkern=Opt%
\ r a i sedi m=Opt%
\setboxl\hbox{L\/}%
\setbox2\hbox{x}%
\setbox3\hbox{.}%
\advance\raisedim by -\ht3%
\d i v i de \ ra i sedim by 2%
\advance\rai sedim by \ht2%
\ifnum\fam=7 \e lse

\leftkern=-\wdO
\ d i v i de\ l e f t k e r n by 8%
\advance\leftkern by \wdl
\advance\ lef tkern by -\wdO
\ r i ghtkern=-\wd0
\d i v i de \ r i gh tke rn by 6%
\advance\rightkern by -\wdl
\advance\rightkern by \wdO

\f i
\allowhyphens\discretionary{L-}{L}%
{\hbox{L}\kern\l e f tkern%

\ ra i se \ ra i sedim\hbox{.}%
\kern\rightkern\hbox{L}}\allowhyphens

1
\endi nput

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Typesetting Catalan Texts with TEX

The definitions produce the following result:

\rm li intel'ligencia LZ COLLECCIO

\ i t tl intetligencia LL COL.LECCIO
1 1 intel'ligencia L.L COLLECCI~
\bf r1 intelligencia L'L COL'LECCIO

\tt 1.1 i ntel.1 igenci a LmL COL'LECCI~

Availability

Besides the \pa t te rns described in t h s paper, two

other sets of hyphenation patterns exist for Catalan.
They have been developed by Gonqal Badenes
and Francina Turon (badenesei mec. be), and by

Francesc Carmona (f ranceporthos. bi o . ub. es).

All three cahyphen. tex files are under beta

test, and can be obtained from the respective
authors. The authors have tested the version de-
scribed here on a PC, using multilingual PCTEX 3.1,

PCTEX 3.14 and emTEX 3.14 1 -using the primitive

\charsubdef of Ferguson (1990) -and also on a
Macintosh, using Euro-OZTEX and the Cork font

scheme. Hopefully, a unified set of Catalan hyphen-
ation patterns will soon be available by anonymous

f t p from major TEX servers.

Acknowledgements -

The authors wrote this joint work after two inde-

pendent works submitted to TUGboat (Fuster) and
to t b s conference (Valiente Feruglio). Barbara Bee-

ton suggested this collaboration to us and the result

is certainly better than the originals. Gonqal Badenes
(IMEC, Leuven) and Francesc Carmona (Universitat

de Barcelona) provided beta-test sets of hyphenation

patterns. Joan Moratinos (Ajuntament de Palma de

Mallorca) and Magdalena Ramon (Universitat de les

Illes Balears) provided assistance in grammatical,
linguistic and terminological issues. Joan Alegret

(Universitat de les Illes Balears) provided guidance
on etymological issues. Luz Gil and Eddy Turney

(Universitat Politecnica de Valencia) revised our

English. Special thanks to all of them.

Colomer, J. Nou diccionari angles - catala catala -
anglb. Portic, Barcelona, 1989.

Fabra, P. Gramatica de la lengua catalana. Tipografia
de "L'Avenq", Barcelona, 1912.

Fabra, P. Ortografia catalana. Barcino, Barcelona,

1927.

Fabra, P. Diccionari general de la llengua catalana.
EDHASA, Barcelona, 1974.

Fabra, P. La llengua catalana i la seva normalitzacio.
Edicions 62 i "La Caixa", Barcelona, 1980.

Fabra, P. Converses filologiques I. EDHASA, Barcelona,

1983.
Fabra, P. Converses filologiques II. EDHASA, Barcelona,

1984.

Ferrer Pastor, F. Vocabulari castella - valencia
valencia - castellh L'Estel, Valencia, 1973.

Ferguson, M. J. Documentation file for the use o f
charsublist. June, 1990.

Haralambous, Y. 'TEX Conventions Concerning Lan-

guages". TEX and TUG NEWS, 1(4), 1992, pp. 3 -

10.
Haralambous, Y. "Hyphenation patterns for ancient

Greek and Latin". TUGboat, 13(4), 1992, pp. 457 -

469.

Institut d'Estudis Catalans. Normes Ortografiques.
Barcelona, 1913.

Knuth, D. E. The Tgbook. Addison-Wesley, Reading,

Massachusetts, gth printing, 1990.

Lazaro Carreter, F. Lengua espaiiola: historia, teoria
y practica. Anaya, Madrid, 1973.

Liang, F. M. "Word hy-phen-a-tion by com-pu-ter".

Ph.D. thesis. Department of Computer Science.

Stanford University, 1983.

Mira, J. F. Som (llengua i literatura). Edicions 3i4,
Valencia, 1974.

Pitarch, V. Curs de llengua catalana. Edicions 3i4,

Valencia, 1983.

Romeu, X. et al. Diccionari Barcanova de la llengua.
Barcanova, Barcelona, 198 5.

Salvador, C. Gramatica Valenciana (amb exercicis
practics). Lo Rat Penat, Valencia, 1974.

Segarra, M. Historia de l'ortografia catalana.
Empuries, Barcelona, 198 5 .

Segarra, M. Les set redaccions de les "Normes Or- -

tografiques" de l'lnstitut dJEstudis Catalans. In
Bibliography A. M. Badia i Margarit, Estudis de Llengua i Lite-

~ ~ ~ ~ ~ ~ i , C. y-omputer Aided ~ ~ ~ h ~ ~ ~ ~ i ~ ~ for ~ ~ ~ l i ~ ~ ratura Catalanes. X: Miscel'lania. Publications de

and Modern Latinu. TUGboat 13(1), 1992, pp. 23 - l'Abadia de Montserrat, ~arcelona, 1985.

77. Sola, J. Lingiiistica i normativa. Empuries, Barcelona,

Bruguera i Talleda, J. Diccionari ortogrdfic i de lggO.

pron~ncia. ~ ~ ~ i ~ l ~ ~ e d i ~ catalana. ~ ~ ~ ~ ~ l ~ ~ ~ , Valor, E. La flexio verbal. Edicions 3i4, Valencia,

1990. 1983.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Khmer Script Tamed by the Lion (of TEX)

Yannis Haralambous
CERTAL (Centre d'~tudes et de Recherche sur le Traitement Automatique des Langues),
INALCO (Institut National des Langues et Civilizations Orientales), Paris, France.
Personal address: 187, rue Nationale, 59800 LiUe, France
Internet: yanni sagat . c i ti 1 i 11 e . f r

Abstract

This paper presents a Khmer typesetting system, based on TEX, METAFONT, and
an ANSI-C filter. A 128-character of the -/-bit ASCII table for the Khmer script is
proposed. Input of text is done phonically (using the spoken order consonant-
subscript consonant-second subscript consonant-vowel-diacritic). The filter con-
verts phonic description of consonantal clusters into a graphc T~Xnical descrip-
tion of these. Thanks to TEX booleans, independent vowels can be automatically
decomposed accordmg to recent reforms of Khmer spelling. The last section
presents a forthcoming implementation of Khmer into a 16-bit TEX output font,
solving the kerning problem of consonantal clusters.

Introduction to Khmer Script

The Khmer script is used to write Khmer, the official
language of the Cambodian Republic, and belongs to
the Mon-Khmer group of Austroasiatic languages. It
is a very old and beautiful script, and from the type-
setter's point of view, one of the most challenging
and exciting scripts in the world.

To understand the complications of Khmer
typesetting, we will start with a quick overview of
the Khmer writing system. Khmer is written from
left to right; the Khmer alphabet has 32 consonants,
the following:

f i Z ~ Z ~ ' L 7 ~ ~ ~ b T ~ ~ 4 6 ~ 6 1 $ 1 % i I ? 1 ~ ~

6 ~ ' 6 6 1 ' 6 ~ ~ h ; d 6 ~ i $ ~ U l ~

The character H denotes the absence of a con-
sonant. From the typesetter's point of view and with
respect to collating order, it might as well be con-
sidered as a consonant. We wdl use a box U to denote
an arbitrary consonant.

These 33 "consonants" (except 4) can appear in
the form of subscript consonants:

LO 0 0 OJ 0 0
oi d cr H

A subscript consonant is pronounced after the
"primary" consonant. Nevertheless, as the reader
has certalnly noticed, the subscript consonant I3 is
written on the left of the primary consonant.

It is also possible to have two subscript conson-
ants carried by the same primary consonant. In that
case, the second subscript consonant has to be LO.

Examples: k, N.
Ln I.

A consonant, consonant + subscript or con-
sonant + double subscript combination can carry
a vowel. There are 28 vowels:

Although vowels are always pronounced after
consonants, their graphical representation literally
surrounds the consonant/subscript combination:
they can appear above, beneath, on the right or on
the left of consonants. Often a vowel's glyph has
two or three non-connected parts.

When combining vowels with subscript conson-
ants, the following graphical rules are followed:

if the subscript has a right protrudmg stem
then the vowel 01 connects to the subscript and
not to the consonant: GJ + G? = 9 etc.

if the consonant carries both a subscript LU and
a vowel with left branch, then the latter is placed
on the left of the former: LG + 60 = 610 etc.

if the consonant carries both a subscript con-
sonant and a subscript vowel, then the latter is

placed underneath the former: + Q = i, 10 +
g = IG etc.

d

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Finally, a group of characters as described
above can carry a diacritical mark. These are always
placed above the character:

0 0 0 0 6
We will call the combination of consonant and

eventual subscript consonant, second subscript con-
sonant, vowel and diacritical mark, a consonantal
cluster. Theoretically there can be 535,060 differ-
ent consonantal clusters, but in practice less than
1% of them are really used. An analytic decomposi-
tion of A. Daniel's Khmer-French dictionary (Daniel,
1985) has provided no more than 2,821 different
consonantal clusters out of 25,000 entries; collo-
quial Khmer may require even less clusters.

Besides consonantal clusters there are also 14
"stand-alone" characters in the Khmer alphabet:

These carry neither subscript consonants, nor
vowels, nor accents. They cannot be found in sub-
script form. Orthographical reforms of Khmer have
in some cases replaced them by "regular" conson-
antal clusters.

Inside a sentence, Khmer words are not separ-
ated by blank space. A blank space denotes the end
of a sentence (or of part of a sentence: it plays the
role of the period or of the semicolon in Latin script).

Hyphenation occurs between syllables: a syl-
lable consists of one or two consonantal clusters
with the sole restriction that the second cannot have
a vowel. When a word is hyphenated, a hyphen is
used. Sentences are "hyphenated" into words, but
in that case, no hyphen is used. So from the type-
setter's point of view, between two clusters hyphen-
ation can be

1. forbidden (when the two clusters belong to the
same syllable);

2. allowed and producing a hyphen (when the two
clusters belong to the same word);

3. allowed without producing a hyphen (when the
two clusters belong to different words in the
same sentence).

T h s quick overview of the Khmer script has
shown some of its particularities (see also Daniel
(1985 and 1992), Tonlun (1991) and Nakanish
(1980)). To conclude, the author would llke to under-
line the fact that the main difficulty in Khmer type-
setting is the divergence between phonic and graph-
ical representation of consonantal clusters (see Fig-
ure 1).

This paper is dwided into five sections:

1. the definition and discussion of an 8-bit encod-
ing table for information interchange and stor-

The Khmer Script Tamed by the Lion (of TEX)

age in the Khmer script. Consonantal clusters
are encoded according to their phonic repres-
entation;

the presentation of three Khmer font f a d i e s ,
designed in the METAFONT language. These
fonts correspond to the three main styles of
Khmer type and provide sufficient metaness to
perform optical scaling, continuous interpola-
tion from light to extra-bold weight and strong
raster optimization;

the description of the process of deriving
the graplvcal representation of consonantal
clusters out of the phonic one (this process be-
ing implemented in an ANSI C preprocessor);

an overview of hyphenation and spelling reform
rules and their realization in the preprocessor;

shortcomings of the Khmer typesetting system
and plans for future developments.

The author would like to thank Prof. Alain
Daniel (Institute of Oriental Languages and Civiliza-
tions, Paris) for his continuous support and encour-
agement and the Imprimerie Louis-Jean (Gap) in the
person of Maurice Laugier, for having financed this
project.

An 8-bit Encoding Table for the Khmer
Script

Discussion. As mentioned in the introduction, Kh-
mer language is written using consonantal clusters
and stand-alone special characters. The collating or-
der of consonantal clusters is given lexicographcally
out of the cluster components:

Let C1 = c l s l s ;v ld l and C2 = c2~2s;v2d2
be two consonantal clusters, where c l , c2 E

{consonants}, ~ 1 , s ~ E 0 u {subscript
consonants}, s;, s; = 0 or LO, v1, -v2 E 0 u
{vowels} and d l , d2 E 0 u {diacritics]. Then

1. C l >C2 * C1 > C2;

2. if cl = c;! then sl > s;! * C1 > C2 (where
0 precedes any other element);

3. if cl = cz and sl = s2 then s; > s; 2

C1 > C2;

4. if cl = C ~ , S I = s2 and s; = s; then vl >
v2 * C1 > C2;

5. if cl = c 2 , q = ~ 2 , s ; = S; a n d v l = v 2

thendl > d2 * C1 > C2.

The table of 128 codes for Khmer characters
presented on the following page respects the collat-
ing order. Besides consonantal clusters and special
characters, the following signs have been included
in the 8-bit encoding:

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Yannis Haralambous

6
consonant subscript 2nd subscript vowel diacritic

consonant consonant

4% jcaj
%+. 6

%

left part central part movable part right part

Figure 1: Decomposition of a Khmer consonantal cluster.

1. digits: 0, 0, h, 6n, L, 6. 3, 0, d, d;

2. punctuation marks other than the ones bor-
rowed from Latin script: 9 (lelkto), a variant
form of the digit h, indicating that the previous
word is repeated (simdar to Latin bid, Y (khan)
and 71 (bariyatosan), equivalent to a full stop, -
(camnocpikuh), a graphcal variant of the Latin
colon, and the French guillemets ((, D;

3. the currency symbol f (rial);

4. the invisible code WBK (word-break) to indicate
the word limits inside a sentence.

Have not been included in the table:

the archaic characters B and d which were abol-
ished about a century ago;

the punctuation marks W (cow's urine) and @

(coq's eye), used in poetry, devination and clas-
sical texts;

the variant forms 8, 0 of 6, 8, used in Diction-
naire Cambodgien (1962).

These characters are nevertheless included in the
TEX output fonts and can be accessed via macros.

The table. The table of codes 128-255 of the pro-
posed 8-bit encoding for Khmer information inter-
change and storage follows. The 7-bit part of the
table conforms to IS0 646 (standard 7-bit ASCII). Po-
sitions OxCF and OxDF are empty.

TUGboat, Volume 14 (1993), No. 3 -Proceedmgs of the 1993 Annual Meeting

The Khmer Script Tamed by the Lion (of TEX)

Codes 0x80-Ox9F and OxCO represent conson-
ants; the correspondmg subscript consonants are
offset by 32 positions: they are represented by
codes OxAO - OxBE and OxEO. The consonant Ox9F

does not have a corresponding subscript consonant.
The practice of subscripts having to be 32 positions
apart from primary consonants is similar to the 32-
position offset of uppercase and lowercase letters in
IS0 646 (7-bit ASCII).

Codes OxCO-OxCE represent special characters.
Digits have been placed in positions 0x00-OxD9,

vowels in OxE1-OxF5 and dacritics in OxF8-OxFF.

Finally, OxFA is the currency symbol, OxDB-OxDE are
punctuation marks and OxBF is the word-break code
WBK.

Because of the 128-character limitation, vowels
8:, fin, 4n, tb, ton, h:, to?: have not been included
in the table. They have to be represented by the
following code pairs:

8: = OxE2 OxF4 6: = OxE4 OxF4

48 = OxE6 OxF4 ~d8 = OxE9 OxF4

60: = OxEC OxF4 %0: = OxED OxF4

601: = OxEF OxF4

Requirements for Khmer script software. As in the
case of Arabic and Hindi, software displaying Khmer
text has to provide context-analytic algorithms. Fol-
lowing is an exhaustive list of the necessary context-
dependent transformations:

when code OxBA follows a code in the range
0x80-OxgE, OxCO then their glyphs must be per-
muted, e.g., PS + LO - Ll.
when code OxBA follows a pair of characters ocp,
with a E {0x80-OxgE, OxCO}, f i E {OxAO-OXBE,

OxEO} then the glyph of OxBA must appear on
the left of the glyphs of oc, /3, e.g., fl + 3J + LO -
LflJ .
when codes OxE9-OxEC and OxEF-OxFO follow
a combination of character codes a, o c f i , ocfi y
where a and fi are as in the previous item and
y =OxBA, then the glyph 6 must appear on the
left of the latter combinations. Example: 61 + DJ
+ LO + 101 - tF$.
when codes OxED and OxEE follow a combin-
ation a, afi, &fir of codes as in the previous
item, then their glyphs must appear on the left
of these combinations;

when code 0x89 (Ul) is followed by a code in the
range OxAO-OxBE, OxEO then the variant glyph
Fn must be used. Example: 9 + 9 - b7J

When the second code is OxA9 then a variant
glyph must be used for it as well: 3 + g - 2.
These contextual transformations have been

implemented by the author into a modified version
of the Macintosh freeware text editor Tex-E&t by
Tim Bender, included in the package. In Figure 2 the
reader can see the effect of strilung successively keys
<Ti>, <0J> (<subscript modifier> followed by <W),

<LO> (<subscript modifier> followed by <I>), <[El>,
to finally obtain the consonantal cluster 6Lfia.

M ETA FONT^^^ Khmer

Font styles. There are three styles used in Khmer
typesetting: standing (aksar ch-hor), oblique (aksar
chrieng) and round (ak-sar mul). The latter is vir-
tually identical with inscriptions of the 12th and
13th centuries at Angkor Wat and is reserved for
religious texts, chapter headmgs, newspaper head-
lines, inscriptions and on other occasions where it
is wished to make a contrast with the oblique script,
to add a touch of formality, or to provide variation
of emphasis (see Tonkin (1991)).

The author has designed three METAFONT font
families, corresponding to these styles; samples of
these fonts in 14.4 point size can be seen on Figure 3;
Figure 4 shows a sample headline using the round
font.

In Figure 5 , the Khmer letter f3 has been
reproduced 256 times, with different values of
two parameters: the widths of "fat" and "thin"
strokes. The central vertical symmetry axis repres-
ents "~gyptienne"-like characters, where the para-
meters have the same value. T h s classification can
of course be refined and allows an arbitrarily precise
choice of the font gray density.

Obtaining a Graphical Representation out
of a Phonic One

Above we have given a quick overview of the (min-
imal) contextual analysis involved in displaying Kh-
mer script on screen. The situation is much more
complicated in the case of h g h quality typesetting.

TEX is the ideal tool for typesetting in Oriental
scripts like Khmer, because of the Inherent funda-
mental concept of boxes (see The Tmook (Knuth,
1989) and Kopka (1991 and 1992)). As in mathemat-
ical formulas, elements of a consonantal cluster are
moved to aesthetically correct positions and then
grouped into a single and indivisible "box" whch
TEX treats as a single entity.

TUGboat, Volume 14 (1993), No. 3 -Proceelngs of the 1993 Annual Meeting

Yannis Haralambous

10 sample I lo sample

1-J sample 10 sample

(Q

Figure 2: A text editor with Khmer contextual properties.

Standing characters

too +I Ee&zrslo c&s& 7J ~edoEomrh&&e&css~ 4 bc~sg's .I ms&a&Es~s-

banss~c&cdcanscr d i%asfimrts;cdet% 2J &fr?aae&s~ecas r rcu 4 c~cd&)-

&'og &cmrmsGa&cs?rca .I bEswstsstcn 3 c&o952 mss~cc~nreZijcss Rs .I

b

Figure 3: Samples of Khmer fonts.

TUGboat, Volume 14 (1993), No. 3 -Proceedmgs of the 1993 Annual Meeting

The Khmer Script Tamed by the Lion (of TEX)

Figure 4: Headline in round style.

In this section we Mill1 see how the graphical
representation of a cluster is constructed, using both
the preprocessor and TEX.~

Graphical classification of Khmer cluster compon-
ents. As already mentioned, there is a strong diver-
gence between the phonic and graphical representa-
tion of a consonantal cluster: for example, if c =M,

sl =EJ, 3 2 =Lr, v =to?, then for the same cluster
GpJJ, the former representation is <C><S~><SZ><Y>

and the latter <v (left branch)><s2><c><sl><v (right
branch)>.

A thorough study of Khmer script and tradi-
tional typography has resulted in the following clas-
sification of graphical components of a consonantal
cluster:

1. the "left part". Four elements which are placed

on the left of a consonant: LC, h, b, LO.
2. the "central part". All consonants: W, 2 . . . R.

Also consonant + vowel E {GI, G:, 011 combin-
ations, whenever the vowel is attached to the
consonant and not to a subscript: fi?, i%, 7T7 etc.
but not W3.

The difference between "left" and "central"
part is that only the latter is taken into ac-
count when determirung the symmetry axis of
the cluster.

3. the "movable" part. Subscripts and super-
scripts w h c h are moved horizontally so that
their symmetry axis coincides yith tbe axis of
the central part: 9.. .W, and fi. I, 8, 0, IJ, Ll, 8,
0, 0, 0, 6, h.

Theoretically it would be possible for TEX to
graphically represent a cluster out of its phonic
representation without the assistance of a prepro-
cessor. However, t h s process would be too slow
and memory-consuming for real-life typesetting.

4. the "right" part. Elements placed on the right
of the central part, and not involved in the de-
termination of the cluster symmetry axis. In

t h s category we have certain subscript charac-
ters: DJ . . . 9, as well as selected subscript and

superscript vowels and &acritical marks: 0, q:
cj, 0:. G , d, d, d.
The effective graphical construction of a con-

sonantal cluster by TEX is done in the following way:
the preprocessor's output replaces the phonic rep-
resentation of a cluster (in the encoding described
under Discussion) by a TEX macro \ccl with 5 ar-
guments: the first is a 9-digit number representing
the phonic representation of the cluster (and with
the property that if N, N' are numbers representing
clusters C, C' then C > C' a N > N', where > is
the collating order of clusters and > the usual or-
dering of integers); the remaining four correspond
to the four parts of the graphical decomposition of
a cluster as described above. For example,

\ccl{0503115Ol}{e/r}{gA}{/k}{'}

indicates a left part e / r (61Z), a central part gA

(h), a movable part /K (a) and a right part ' (0).
T h s example illustrates the important fact that the
symmetry axis of the central part is not necessarily
the middle axis of the box containing the central
part:

h and not h
GI GI

The difference is of more than just aesthetic
nature: in some cases the vertical alignment of ele-
ments of a cluster is necessary to determine the
cluster itself. Take for example characters 0x89 ($1
and 0x96 (b'l). When the latter is followed by a vowel
GI it becomes 6n, whch is indistinguishable from
the upper part of the former: it is the lower part

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 265

Yannis Haralambous

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Khmer Script Tamed by the Lion (of TEX)

3 that allows bfferentiation. But when both hap-
pen to carry the same subscript consonant then t h s
lower part vanishes. The difference will be found
in the alignment of the subscript consonant: in the
case of one would have for example LTJ, while in
the case of 6n it would be p.

From these considerations we conclude that the
symmetry axis location is a vital piece of information
for every character; it depends on the shape of the
individual character and cannorbe given by a general
font-independent rule.

In TEX one has several global parameters for a
given font, but only 4 for every individual character
of the font: width, height, depth, italic correction.
The author has used the parameter "italic correc-
tion" as a carrier of the information on the symmetry
axis location.

The construction mechanism is very simple: TEX
typesets first the left part and the central part of
the cluster; then it moves to the left, by an amount
equal to the italic correction of the central part and
typesets the movable part; finally it moves back to
the right edge of the central part and typesets the
right part of the cluster.

To simplify t h s mechanism, all movable ele-
ments are of zero width. The reader can see an
example in Figure 6, where TEX boxes are bsplayed
in gray and the symmetry axis of the central part by
means of a dotted line.

Special cases and exceptions. The mechanism of
cluster construction described above fails in certain
special cases. These are handled by using variant
forms of graphcal elements. Following is a quick
description of these cases.

1. often two or three subscripts or superscripts
are found in the same cluster. In these cases
the following rules apply:

(a) in the case of two subscript consonants,
the second being necessarily ID, a deeper
form of the latter is used: LC + = 0; I.

(b) in the case of a subscript consonant and a
subscript vowel, the vowel is placed under
the subscript consonant: + ; = g. T h s

Y

rule applies also for the subscript conson-
ant G I0 + 9 = LO;

ii

(c) in the case of two subscript consonants
and a subscript vowel, the consonants are
placed as in (a) and the vowel is placed on
the right of LO + 1 + ; = 0; I,.

(d) in some cases we have both a superscript

vowel and a diacritical mark. The folloy-
ipg combinations are known: 8, 6, d, d, ?,
8;

2. to prevent confusion between the letter U fol-
lowed by vowel Dl, and the letter Ul, the former
combination of consonant and vowel is written
g. A variant of t h s letter is used in the presence
of a subscript: + ; = p;

3. when a cluster with ID contains vowel or 4,
then the width of the primary consonant de-
termines the depth of the vowel: 6 + 01 + LC =

19, but Lf' + 01 + LO = ~4 ;
4. the letter 3 is not supposed to carry a subscript

consonant; in some rare cases, it carries sub-
script 2: 8.

vl

Collating order. As mentionned in the previous sec-
tion, the TEX command \ccl , obtained by the pre-
processor, describes a cluster by means of five argu-
ments. The last four arguments describe the cluster
graphcally: they correspond to the four parts of
the graphcal decomposition of a cluster, according
to the subsection on Graphical classification of Kh-
mer cluster components. The first argument corres-
ponds to the phonic decomposition of the cluster; it
is a 9-digit number N = c1~2~1~2s~v1v2dld2 where

1. clcz determines the primary consonant of the
cluster: c1c2 goes from 01 = 9T, to 33 = H;

2. 3132 determines the (first) subscript consonant:
3132 = 00 if there is no subscript consonant,
otherwise 313-2 goes from 01 = !, to 32 = 1;

3. 33 = 0 if there is no second subscript consonant,
1 if there is a second subscript ID;

4. v1v2 determines the vowel: vlvz = 00 if there
is no vowel, otherwise v1v2 goes from 01 = 01,

t o 2 8 = 0 ;

5. dld2 determines the &acritical mark: dld2 =

00 if there is no diacatic, otherwise dld2 goes
from 01 = O, to 08 = 0.

A complete list of characters, alphabetically ordered,
is given in the Introduction. From the rules of collat-
ing order, it follows that for clusters C, C' and their
corresponding 9-dgit numbers N, N', we have

C > C ' e N > N 1

where > is the collating order of clusters. The num-
bers N , N' can be easily ordered since the collating
order of clusters corresponds to their order as in-
tegers. T h s fact allows straightforward searching,
sorting, indexing and other collating order involving
operations.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Yannis Haralambous

Figure 6: Construction of a Khmer consonantal cluster by TEX.

Hyphenation and Other Preprocessor
Features

Hyphenation. Hyphenation of Khmer obeys a very
simple rule: words are hyphenated between syl-
lables. Unfortunately t h s rule can hardly be imple-
mented by a computer since there is no algorithmic
way of detecting syllables: a syllable can consist of
one or two consonantal clusters.

With the help of Prof. Alain Daniel an empirical
hyphenation mechanism has been developed, out of
several general rules and observations. Following is
a first set of rules - there will be further refinement
after thorough testing on bigger amounts of Khmer
text.

Let C, C' be consonantal clusters. Hyphena-
tion C-C' is possible whenever:

1. C' contains a vowel;

2. C contains a vowel among &, 32, p:, ti:,
to:, fa:, hl, ID%, a, 3, t, Us, or one of the

diacritical marks 0, i;
Hyphenation is always possible before or
after special characters.

TEX provides an internal hyphenation mechan-
ism based on hyphenation patterns. Unfortunately
t h s mechanism cannot be used in the case of Kh-
mer consonantal clusters, since these are enclosed in
boxes and hence cannot be considered as characters
by TEX. For t h s reason, the hyphenation algorithm
is performed by the preprocessor; whenever one of
the two rules above is satisfied, the TEX macro \- is
included i n the output. T h s command expands as

\def \ - { \d i s c r e t i onary{- } { } { } }

so that a hyphen is obtained whenever a word is hy-
phenated. There is no algorithm yet for automatic
decomposition of sentences into words: the user is
asked to include WBK (word-break) codes between
words inside a sentence. These codes are conver-

ted into \wbk commands by the preprocessor; \wbk

expands into

\de f \wbk{ \d isc re t ionary { } { } { } }

that is: a potential hyphenation point, without hy-
phen.

Decomposition of special characters and spelling
reforms. The special characters (codes OxC1-OxCE)

are mostly hstorical residues and loans from other
languages (Pali and Sanskrit). There have been many
attempts by the Cambodian Ministry of Education to
restrain theu number, by eventually replacing some
of them with regular consonantal clusters.

T h s replacement can vary from word to word.
Prof. Alain Daniel has established a list of reformed
words and their replacements. This list is known
by the preprocessor, whch d l output every special
character as a TEX macro with a numeric argument,
indicating the potential replacement by some other
special character or by a consonantal cluster. For
example, accordmg to the surrounding word, 2 is
output as \aoO, \ao l , \ao2, \a03 or \ao4. If a cer-
tain boolean variable \ i f reformed is false then all
five macros will always expand into 9. On the other
hand, if the boolean is true, then the first macro will
expand into 2, the second into tM, the th rd into 2,
the fourth into H and the fifth into 6d.

Following is a first list of reformed words,
known by the preprocessor. The special characters
and their decompositions are set in bolder type.

idslr - iislr sdsu - simr
d y m s - $v'iW 6 1 M - d m

61 MI6 - 6 ~ 6

61 f$h - 6 ~ 6 .
$Pi - yn 1

2mr - ym
 is - nr~l rmtqn$ - ~ m R p - f i
r m - bm 2,; - y; - gfi $,H! - BH

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Khmer Script Tamed by the Lion (of TEX)

Shortcomings and Plans for Further
Development

The system presented in this paper allows h g h qual-
ity Khmer typesetting. It is the first Khmer typeset-
ting system resolving problems such as text input
in phonic order, positioning of subscripts and su-
perscripts, optical scaling, hyphenation and replace-
ment of special characters.

Nevertheless the graphical cluster-construction
algorithm as described in this paper has certain
flaws; a few examples:

if a consonant with subscript consonant carries
the vowel, then the latter should be justified
at the right edge of the subscript, which is not
necessarily aligned with the right edge of the
consonant. For example, in the (hypothetical)
cluster $ the Q is badly positioned; *
take a narrow letter (like 6, f) which carries a
large subscript (like 2 or 9) and suppose you
are at the line boundary (either left or right);
then contrary to the normal use of subscripts,
it is the subscript whch should serve for line
justification, and not the consonant.

These problems cannot be solved using the cur-
rent mechanism (in whch TEX considers that all sub-
scripts and superscripts are of zero width). It could
be possible t o use subscripts with non-zero width,
but (a) t h ~ s would slow the process down, and (b)
it wouldn't solve the problem of the line boundary,
since we are a shng for contradicting properties: in-
side a sentence subscripts should not interfere in
determining the distance between clusters, whle

at the line's boundary they ~ h o u l d . ~ Furthermore,
one could imagine a sentence endmg withfind the
next sentence starting with& The blank space in-
between is hardly sufficient to prevent clusters from
overlapping.. . visually the beginning of the sentence
is lost.

Corrections to these problems can be done
manually (after all these problems occur very rarely).
But a much more natural and global solution would
be to treat consonantal clusters as individual codes
in a 16-bit encoding scheme. As mentioned in the in-
troduction, only 2,821 clusters (out of 535,000 the-
oretical possibilities) have been detected in the fairly
complete dictionary of Prof. Main Daniel, so a 16-bit
table would be more than sufficient to cover them.

Text input could still be done using the 8-bit
encoding of Section 1; the preprocessor would then
convert the 8-bit description of consonantal clusters
into their codes in the 16-bit table (orby their explicit
construction, if for any reason they are not included
in the table). T h s approach is similar to Kanji con-
struction out of Kana characters in Japanese, or to
Hangoul construction out of elementary strokes in
Korean.

An extended version of TEX -whch accorlng
to D.E. Knuth's directives should not be called TEX
anymore- would then perform real kerning and hy-
phenation, since in t h s case consonantal clusters
would be treated by TEX as letters. Work in the l r -
ection of an extended TEX is currently being done
by Phlip ~ a y l o r ~ and his team (NTS project), and by
John Plaice4 (!2 project)j

* Unfortunately, in TEX there is no such thing as
an \every1 i ne command.

Royal Holloway College (UK)
Universite Lava1 (Canada)

j It should be mentioned that the Japanese TEX
Users Group, and the ASCII Corporation, Kanawa-
salush Kanagawa, Japan, have developed and re-
leased 16-bit versions of TEX. Unfortunately, these
are not "real" 16-bit TEXS (and hence inefficient
for 16-bit Khmer), because they allow only 256 dif-
ferent character widths (it happens that Japanese
Kanji, just llke Chinese characters, have all the
same width) and 2562 kerning pairs or ligatures.
True 16-bit TEX should allow 256* = 65,536 char-
acter widths, and 65, 5362 = 4,294,967,296 kern-
ing pairs or ligatures. Also 16-bit hyphenation pat-
terns should be possible. Besides Khmer, such an
extended TEX version would be extremely useful for
ligatured Arabic N a s f i , Urdu Nastaliq, Hebrew with
cantillation marks, and other scripts with "advanced
typographcal requirements".

TUGboat, Volume 14 (1993), No. 3 --Proceedings of the 1993 Annual Meeting

Yannis Haralambous

By using virtual property lists, no additional bit-
map files would be added. The 16-bit font would be
made by virtually assembling glyphs taken from the
already available 8-bit font.

Availability

The METAFONT, TEX and C sources of all software
presented in t h s paper belong to the public domain.
They constitute a proposal for a Khmer T# Lan-
guage Package, submitted to the Technical Work-
ing Group on Multiple Language Coordination of the
TEX Users Group and wdl be released after ratifica-
tion. The a version of the package is currently being
tested in Cambodia, and can be obtained by the au-
thor (yanni s@gat . c i ti 1 i 11 e . f r). T h s work will
be presented either by Alain Daniel or by the author
at the First Conference on Standardization o f Kh-
mer Information Interchange, organized by UNESCO,
July 20-23 in Phnom Penh, Cambodia.

Bibliography

Daniel, Alain. Dictionnaire pratique cambodgien-
fran~ais. Institut de 1'Asie du Sud-Est, Paris,
1985.

Daniel, Alain. Lire et ecrire le cambodgien. Institut
de 1'Asie du Sud-Est, Paris, 1992.

d c i q y k j rn~@msu~qgmn6i~fiu@%ierr, R. ss, i2itiof:

[Dictionnaire Cambodgien. Gditions de 1'Institut
Bouddhque, Phnom-Penh, 1962.1

Knuth, Donald E. The T m o o k . Computers and Type-
setting, Volume A. Addison-Wesley, Reading,
1989.

Knuth, Donald E. The METAFONTbook. Computers
and Typesetting, Volume C. Addison-Wesley,
Reading, 1986.

Kopka, Helmut. bT#, eine E i n f i i b g . 3rd edition,
Adbson-Wesley, Miinchen, 1992.

Kopka, Helmut. bT#, ErweiterungsmbgLichkeiten.
3rd edition, Ad&son-Wesley, Munchen, 1991.

Nakanishi, m a . Writing Systems of the World.
Charles E. Tuttle Company, Tokyo, 1980.

To-, Derek. The Cambodian Alphabet. Transvin
Publications, Bangkok, 1991.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Language-Dependent Ligatures

John Plaice
Departement d'informatique, Universite Laval, Ste-Foy, Quebec, Canada G1K 7P4

plaice@ift.ulaval .ca

Abstract

The concept of character cluster is introduced to TEX. Any sequence of letters

can be clustered to form a single entity, whch can subsequently be used as a
single character. The standard example for a cluster is a letter w t h diacritic

marks. Clusters are introduced by extending the TEX input language and by mod-

ifying the TEX program. They can be used to define ligatures within TEX, without

passing through the . tfm files, thereby allowing different languages to be type-

set with different ligatures. Clusters can be used in hyphenation tables, thereby
eliminating the need to have precomposed characters in fonts to have correct

hyphenation. A single 256-character font becomes suitable for typesetting all the

world's languages that use the Latin alphabet.

The Latin alphabet is the most widely used alphabet
in the world. Although at first glance, it has only
twenty-six letters, a more careful look will show that

these letters can be used with myriads of different

diacritic marks, and that some languages actually
use special characters above and beyond the origi-

nal 26. If we consider all the possible precomposed

characters, Haralambous (TUGboat, 1989) counts

190 different symbols above the original 26, not in-

cluding the double-diacritic Vietnamese characters

(close to 100 all by themselves). In addition, Jorg
Knappen's font for African languages uses another

100 or so characters (Haralambous, 1992a). Finally,

the ISO-10646 Universal Character Encoding Stan-
dard includes close to 900 precomposed Latin char-

acters.

If all Latin precomposed characters are encoded

separately, then several families of 256-character

fonts would be needed. T h s would be an incredi-
ble waste of space, as most characters would be re-

encoded over and over again. Furthermore, most
sites would end up stocking only one family of

fonts, for the "important" languages (read English

and West-European). On top of these considerations,

the result would still not be technically desirable. It
is standard typographc practice to place diacritical

marks differently in different countries; in fact the

marks may well look different from one country to

another. Let's precompose all those combinations!

Another possibility is to use virtual fonts for

every language. But, according to the Summer Insti-

tute for Linguistics's Ethnologue, there are over 6000

languages on t h s planet, and most of them use the
Latin alphabet. To encode all the virtual fonts would

literally require thousands of files, and few sites (if

any) could afford the Brobdingnagian quantities of

disk space required.
The only reasonable solution is to encode, in

the fonts, diacritical marks separately from the let-

ters that they are placed on. However, TEX currently
only offers two ways to combine characters: liga-

tures and the \accent primitive. Ligatures do not
(currently) do vertical placement and \accent has

a fixed algorithm for character positioning. There

is another alternative that can be considered: active

characters. However, these can interact in strange
ways with macros. Finally, preprocessors have a ten-

dency to do strange stuff with macros.

In fact, what is needed is some sort of "active

character" mechanism for after macro expansion,

i.e., some sort of generalized ligature system that
allows vertical, in addition to horizontal, displace-

ment, and that does not require these ligatures to

be encoded in the . tfm files.

In addition to not allowing vertical displace-

ment, ligatures have their own problems. Jackowski
and Rytko (1992) discuss in detail the problems

in using ligatures to access Polish characters with

ogoneks. First, because implicit kerns and ligatures

are defined one character at a time, it is very difficult,

if at all possible, to correctly compose the characters

and kern between these newly composed characters

and their neighbors. Second, ligatures make it diffi-

cult for majuscule letters with diacritical marks to be

given the appropriate space factor (\sfcode) codes.
Thrd , if ligatures are used in hyphenation patterns,

then the \lefthyphenmi n and \righthyphenmi n
parameters do not work properly, as the individual

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

John Plaice

characters in the ligatures are counted individually,

rather than collectively. The basic problem is the

same in all these cases: the generated ligatures are

not treated as a single character but, rather, as a
sequence of individual characters.

It is not just a system of generalized ligatures

that is required, but also the ability to treat these

new entities as single characters. This is done in an

extension of TEX called a, using character clusters,

which do exactly what is required above. A character

cluster is a sequence of letters that can be consid-
ered to be a single character. A character cluster can

be given an \sfcode, \1 ccode and \uccode, and can

be used in the definition of hyphenation patterns.
The typesetting of a character cluster is defined by

an arbitrarily complex sequence of TEX instructions.

With this added functionality, it becomes possible,

to the best of our knowledge, to have a single 256-
character font that is sufficient for encoding all the

world's languages that use the Latin alphabet.

Character Clusters

A (character) cluster is an ordinary sequence of TEX

instructions, which can be considered, for kerning

and hyphenation purposes, as a single character,
along with a name. The name is just a sequence

of characters.

Clusters are defined using the \ d e f c l u s t e r

command. For example,

\ d e f c l u s t e r { e ' } { \ ' e }

defines a possible sequence of instructions to type e
(using the dc fonts). Similarly,

\ d e f c l u s t e r { i j}{\char"BC}

gives the Dutch ij ligature in the dc fonts.

Clusters are used using the \ c l u s t e r com-

mand. For example,

\ c l u s t e r { e ' } t \ c l u s t e r { e ' }

would give the French word for summer, 'ete'. Of
course, no one would want to type \ c l u s t e r all the

time. To reduce typing problems, we introduce a
new syntactic form: <CIC~. . . cn> is equivalent to
\ c l u s t e r {c l c2. . . c,}. The above word therefore

becomes <e ' >t<e ' >.

The traditional ligatures of TEX are really

just alternative presentations of the composing
characters. These can be presented as follows:

<CIC~ . . . Cn 1 cn+lcn+2.. . c,> means that the cluster
<CIC~ . . . cn> can be broken up by the hyphenation al-
gorithm into the basic characters <c,_lc,+z.. . c,>.
For example, the 'ffl' ligature can be represented by
< f f l l f f l > .

Context Dependent Analysis

Now even the word <e '> t<e ' > is too much work to

type. One should be able to type an ordinary stream

of text and, with no special instructions inserted,

have the appropriate clusters inserted into the text.
Of course, what is appropriate will depend signifi-

cantly on the language and the farmly of fonts being

used.
In the case of our example, it should be possible

to simply type e ' t e ' and have the system handle
the rest. To do this, the Chie f Execut ive routine

is modified so that it filters through a deterministic

finite state automaton (DFA) all the text that is in
horizontal mode. This DFA changes depending on
the language being typeset, the typesetting rules in

effect and the font farmlies being used.
For example, in French, many words use the ce

and ae ligatures that were common for the typeset-

ting of Medieval Latin (Becarri, 1992). A careful pe-

rusal of the medium-size Petit Robert dictionary (Rey
& Rey - Debove, 1984) allowed the definition of a Lex-

like set of patterns that can be used to determine

when ae and oe should form the ligatures and when

they should not:
Aoe <oe>

oe / l 1 oe

oe / [c i lmrs tu] <oe>

Aaethuse aethuse

mae mae

ae <ae>
This set of patterns only considers common terms.
For names and persons, the set is wrong: for ex-

ample, many Flemish and Dutch proper names have
unligatured ae's and oe's that would be ligatured by

t h s set of patterns.
The line

should be read as if the letters oe are followed by

any of c lmrstu, and then those two letters are re-

placed by the <oe> cluster. Therefore the word oe i 1

becomes <oe>i 1. The A refers to the beginning of a

word.

This same mechanism can be used to handle

words with strange hyphenation. For example, the

German words backen, Bettuch, S c h i f f a h r t could
be written as follows
Abacken ba\d isc{k- } {k} {ck}en

ABettuch Be\di s c { t t - } { t } { t } u c h

ASch i f f ah r t S c h i \ d i s c { < f f > - } { f } { f f } a h r t
where the \ d i sc means a discretionary break.

Similarly, the English word eighteen could become
Aeighteen e i gh \d i s c { t - } { t } { t } een

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Language-Dependent Ligatures

Kerning

Kerning is a purely visual phenomenon, and so is

handled after the context-dependent analysis has

been made. In t h s situation, kerning becomes much

simpler than the way that it is currently used in TEX

and METAFONT. All that is required is to specify

the kerning that must take place between any pair
of characters or clusters. A Lex-like syntax is also

used to specify these pairs.
The example given in the appendix gives the

kerning in the roman. m f file for the Computer Mod-

ern famdy of fonts (Knuth, 1987), modified so that

the letters a, e and o can each receive acute, grave,

trema (or umlaut), and circumflex accents.

Hyphenation

Hyphenation patterns are no different from the old

ones, except that they also allow clusters. However,
it now becomes possible to have a period (.) in the

middle of a pattern, as is required by some Afrlcan

languages, since the begimng of a ~ o r d is marked

by A and the end of a word by $. Accented characters

are of course represented by clusters. For the pur-

poses of \l efthyphenmin and \ r ighthyphenmi n,

clusters are counted as a single character. The

followng example is an excerpt from the 8-bit hy-
phenation file ghyphen3. t e x for German (Schwarz,

1990):

. k r a f 6

. kAAfc5ra

.l ab6br

. l i i e 6

. l o6s5k

. lAAf64s3 t

whlch is replaced with:

Akraf6

Ak<uU>c5ra

A1 ab6br

A l i i e 6

Alo6s5k

A1 <on>4s3t

The second form is more readable and has the ad-

vantage of not being tied to a particular font encod-

ing. It is now possible to separate the mput encoding
from the output encoding.

Handling 16-bit and 32-bit Input

Currently, there are many discussions about how

to best handle 8-bit input. There are three major

currently-used 8-bit extensions of ISO-646 (ASCII):

ISO-8859-1 (Latin-l), Macintosh and IBM-PC. The
users of all these systems would like to write us-

ing the characters that they have available. How

are these needs to be reconciled with a? Further-

more, how should ISO-10646 and UNICODE 1.1 be

handled? What is the relationship between these
character encodings and the clusters?

The answer is quite simple. Internally, if a clus-

ter has a corresponding encoding in ISO-10646, then
that number is used for that cluster. However, if

a cluster does not have a corresponding encoding,

then a negative number is used (remember, ISO-

10646 is really only a 31-bit encoding, and 'h-bit on'
is reserved for user-defined characters). The result

is to separate input, internal and output encodings.

Implementation

At the time of writing, none of what has been pro-

posed has been implemented, so many of the pro-

posals are not finalized. Nevertheless, some detailed
analysis has been completed. There are two parts

to the implementation. First, the files defining the
context-dependent analysis and the kerning must be

translated into finite state automata readable by the

I N I T E X program. Second, the TEX program must be

changed to include a new data structure for clusters,

new syntactic entities, as well as the basic routines
whlch must be written or changed. Most of the work

takes place in the Chie f Execut ive.

Future Work

Character clusters are not just designed for the Latin
alphabet. The same principles could be used to
design compact Greek (Mylonas & Whitney, 1992)

and Cyrillic fonts. More generally, typesetting Ara-

bic (Haralambous, 1992a-c) or South Asian (Mukkav-

illi, 199 1) scripts requires significant amounts of
context analysis to choose the right variant of char-

acter and the correct set of ligatures to form a word

and, in the case of Arabic, to correctly place vow-
els. Different solutions have been proposed, either

using active characters, ligatures in the fonts or pre-
processors, but none of them is sufficiently general.

Character clusters should yield an elegant solution

for these scripts.

Problems which have not been discussed here

include the direction of text. At least four sys-

tems are used currently in different languages: left-
right - top-down, right-left - top-down (Arabic, He-

brew, Syriac (Haralambous, 1991)), top-down -right-

left (Japanese (Hamano, 1990)), and top-down- left-
right (Mongolian (Haralambous, 1992a)). Some lan-
guages, such as Japanese, Mongolian and Epigraph-

ical Greek, can be written in more than one direc-

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

John Plaice

tion. Clusters would be useful in implementing

these questions.

Acknowledgements

The !2 project was devised by Yannis Haralambous

and myself. It attempts to resolve some of the fun-
damental issues that have been raised during the

discussions in the Technical Worlung Group on Mul-

tiple Language Coordination.

Bibliography

Beccari, Claudio. "Computer aided hyphenation for

Italian and modern Latin". TUGboat, 13(1),

pages 23 - 33,1992.

Hamano, Hisato. "Vertical typesetting with TEX".

TUGboar, 11(3), pages 346 - 352, 1990.

Haralambous, Yannis. "TEX and latin alphabet lan-

guages". TUGboat, 10(3), pages 342 - 345, 1989.

Haralambous, Yannis. "TEX and those other lan-

guages". TUGboat, 12(4), pages 539 - 548,1991.

Haralambous, Yannis. "TEX et les langues orientales".

Paris: INALCO, 1992.

Haralambous, Yannis. "Towards the revival of tra-

ditional arabic typography.. . through TEX". In

Proceedings of the 7th European T@ Confer-

ence, pages 293 - 305. Brno, Czechoslovalua:
Masarykova Universita, 1992.

Haralambous, Yannis. "Typesetting the Holy Qur'an

with TEX", 1992.

International Organization for Standardization.

Informa tion technology - Universal Multiple-

Octet Coded Character Set (UCS). Draft Inter-
national Standard ISO/IEC DIS 10646-1.2. ISO,

1992.

Jackowski, Bogusiaw and Marek Rycko. "Polishing

TEX: from ready to use to handy to use". In

Proceedings o f the 7th European T@ Confer-
ence, pages 119 - 134. Brno, Czechoslovalua:

Masarykova Universita, 1992.

Knuth, Donald. Computer Modern Typefaces. Addi-

son-Wesley, 1986,1987.

Mukkavilli, Lakshmi V. S. TeluguT~X, 1991.

Mylonas, C. and R. Whitney. "Complete greek with

adjunct fonts". TUGboat, 13(1), pages 39 - 50,

1992.

Rey, A. and J. Rey - Debove, editors. Le Petit Robert 1.

Dictionnaires Robert - Canada, 1984.

Summer Institute for Linguistics. Ethnologue. SIL,

Santa Ana, CA (USA), 1988.

Schwarz, Norbert. "German hyphenation patterns".
1990.

Appendix:

as a<a'><a6><a"><ab

es e<e'><e6><e"><eb

os o<o'><o '><ol '><ob

%%

k {as} \i f s f s - \ k a \ k \ f i

v {as} \i f s f s - \ kaO \ f i

k cCeslCos1 \ k

v c { e s l { o s l \i f s f s \ k O \ f i

w {as lcCeslCosl \k

P A \kb

YP Casl{es lCosl \k

YP \ . , \kb
FVW {os}{es}ur{as} \ i f s f s \ k b \ k \ f i

FVW A \ i f s f s \ k c \ k b \ f i

FKVWX CGOQ \k

T Y \i f s f s \ k \ k b \ f i

TY {as}{es}{os}ruA \kb

OD XWAVY \ k

hmn btuvwy \i f s f s \kO\f i

c hk \ i f s f s \ k O \ f i

b {os lp cd{es}{os}q -\k

b {os lp x \k

C a s l b C o s l ~ v \ i f s f s \ kO \ f i

{ as Ib {os lp j \i f s fs \kaO\ f i

{ as l b {os lp j \ i f s f s O \ k \ f i

{as lbCos lp t Y \k
{as}b{os}ptu w \ k

A tCG0QU \ k

R tCGOQU \i f s fs \kO\ f i
AL TY \kb

R RY \i f s f s \ kbO\ f i

A L VW \kc

R VW \ i f s f s \ k c O \ f i

9 j - \k
I I - \k

2 74 TlJGboat, Volume 14 11993), No. 3 -Proceedings of the 1993 Annual Meeting

Virtual Fonts in a Production Environment

Michael Doob
Department of Mathematics
University of Manitoba
Winnipeg, MB R3T 2N2

Canada
Internet: mi chael-doob@umani toba. ca

Craig Platt
Department of Mathematics
University of Manitoba
Winnipeg, MB R3T 2N2

Canada
Internet: c-pl atteumani toba. ca

Abstract

The virtual font facility allows new fonts to be created from existing ones.
It is possible to change the properties of a particular character, to rearrange
characters within a font, to combine characters from several different fonts, and,
perhaps most importantly, to execute sequences of instructions when printing a
single character.

This paper will give several applications of virtual fonts that have made the
printing of the journals of the Canadian Mathematical Society more efficient and
more attractive. Most of these applications arise from the necessity of using a
given set of Postscript fonts. There will be some discussion of the reasons why
the use of virtual fonts became the best alternative.

There is no assumption of prior knowledge concerning virtual fonts. All
necessary concepts will be explained as they arise.

Introduction

Virtual fonts were introduced by Knuth (1990,
page 13) as a mechanism for malung seamless
applications of TEX to different types of printing
hardware. There have been several applications of
this mechanism since then, e.g., Hosek (19911, but
the widespread use anticipated in the original article
has not as yet taken place. T h s is unfortunate since
virtual fonts very much enhance the flexibility with
which TEX may be applied.

There are several purposes of t h s paper. We
want to examine some problems that arose when
using TEX to produce several journals for the Cana-
dian Mathematical Society, and to show why virtual
fonts turned out to be the best mechanism for their
solution. We also want to gather material about
the construction of virtual fonts that heretofore has
been scattered in different publications. It is hoped
that this wdl make it easier for others to use virtual
fonts, and that the original enthusiasm of Knuth
will be justified.

Using virtual fonts: the alphabet soup. Let's think
for a moment about what happens when we use
{\it A} within a TEX file. In the d v i file there is a
command to change font and then a byte containing
the ASCII code for the letter "A", i.e., the number
65. The software used for printing or previewing
d v i files is generically called a device driver; when
the device driver comes to t h s part of the d v i file,
it will look up the appropriate (normally a pk) file,
and use the data there to construct the image of
the original letter. When a virtual font is used,
the number 65 refers to a set of instructions. It

may be simply to print the letter "A" as before,
but it may also allow letter substitutions from the
same font or from different fonts, or allow for a
combination of different letters. In other words,
several different physical fonts can be combined
into one virtual font. Even more, the rules can add
lines and move character positions, and can send
\speci a1 commands to the printing device. And

so to use thls virtual font mechanism we need two

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Michael Doob and Craig Platt

things: (1) a device driver that understands how

to use virtual fonts, and (2) a method for creating

these fonts.
The program dvips understands virtual fonts

and is what is used in the (Postscript) environment

at the Canadian Mathematical Society. So does

the current version of xdvi, whch can be used for

previewing output on the screen of an X-terminal. In
addition, dv idw in the emT@ package and Textures
(version 1.6) are able to interpret virtual fonts

properly.

There is an alphabet soup of file names that

are used with TEX (see Schrod (1993) for a complete
list). Some of these are used in connection with

virtual fonts. The ordinary use of TEX involves a

t e x file which contains the source code, the d v i file
that receives the output of TEX, and another file (in

our case a ps one) that may be produced in order to

view or print the output. These files are in the left
column of Figure 1. As TEX runs, it reads the t f m

files to get information about, among other thmgs,
the bounding box (but not the actual shape) and

the side bearings of the individual letters, and the
kerning and ligature data. The device driver uses

the d v i file for positioning characters on the page,

and (usually) the pk files to get the shapes of these
characters. To use the virtual font mechanism,
it is necessary to have v f files; these contain the

information to be decoded by the device driver,
which can then produce the output in the usual

manner. The v f file, like the t f m and pk file, is

machne (and not human) readable.

I -- I a;: 1 t f g z l I ;; I - pltotf

I -- 1 ;; 1 vpg:f 1 -gl 1
vftovp

dvips

Figure 1: Some alphabet soup

It's possible to adjust the parameters in a t f m

file via two auxilliary programs. The program

tftopI takes a t f m file as input and produces a p l

file as output. This is an ASCII file containing a

description of the original t f m file; the parameters

may be changed using a simple editor. Similarly the
program pltotf will take the p l file as input and give

the corresponding t f m file as output.

There is an extension of t h s idea to handle v f

files. The program vftovp takes a v f and a t f m

file as input and produces a human readable v p l

(virtual properties list) file. This file may be edited.
Conversely, vptovf takes the v p l file and produces

the t f m and v f files. And so, as far as virtual

fonts are concerned, the name of the game is to edit

and adjust the v p l file until the desired result is
achieved.

Working Examples

An all caps font. We use 12pt roman all caps for

titles. At first blush, this should be trivial. After all,

\uppercase{the qu ick brown f o x jumps

over t h e lazy dogs}

will give

THE QUICK BROWN FOX JUMPS OVER THE

LAZY DOGS.

But consider the following example:

The $ 1A1 $ norm o f $ \ x i $ i s

$ \sum-{ i= l }A\ in f ty \ x i - i $1

The use of \uppercase changes the text from

The 1' norm of 5 is 5,
to

THE L1 NORM OF 5 IS XI"==, 51.
This gives us a syntactically correct sentence that

will cause great pain to functional analysts. Ob-
viously we don't want to change the case of the

mathematical symbols. The solution that then

comes to mind is to use \ifmmode to check if the

text is in math mode. So, for example, we might use
something like the following:

\def\ucw#l { \def\next{ \ucwl%

\i f x * # I \de f \nex t { \ re lax }

\e l se \ifmmode # 1

\ e l se \uppercase{#l}

\f i

\fi
\next

1
We have (rather arbitrarily) set up * as a terminator;

we grab a word at a time and check for math mode

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Virtual Fonts in a Production Environment

(the astute observer may have already noted how

the space between words is replaced). If we use this

with our last example we get THE 1' NORM OF 5
IS If"', 51 This has fixed the problem, at least as
far as the mathematics is concerned. But note that
the subscript of the original 5, is still being changed

to upper case. A moment's thought will reveal
the problem. If the entire mathematical expression

%. . . 16 is grabbed at once, the test for math mode

will come too late.

So it would seem that we need to grab a

character (token) at a time. We could do this with
something like the following:

\def\ucc#l{\def\next{\ucc}%

\i f x W 1 \de f \nex t { \ re l ax}

\ e l se \ifmmode # I { }

\ e l se \uppercase{#l}%

\ f i
\f i

\nex t

1
T h s macro w~ll give us

THE1 1 NORMOFE IS2 i = 1 oo Ei

All the mathematics is lower case now, but we have
obviously caused problems in the way the line is

parsed. It seems that our approach is not getting us
too far.

So let's rethink the problem. The root cause
is the fact that the mechanism for case conver-
sion is the TEX primitive \uccode, and t h s is not

defined on a font by font basis (in fact it works

even in mathematical text: if you look at the

TEX output from \l owercase{${\cal B } IA \p r i me

M{\cal C3$} , you'll say "I'm floored!").

It is possible to assign new values to \uccode,

so we could toggle the values when shifting in and

out of math mode with a construction similar to

\everymath. But the problem at hand is really a font

level one; it cries out for a font level solution. One
solution would be to use METAFONT and design

an all caps font from scratch. This is an arduous
job. In contrast, the solution using virtual fonts is

almost trivial.

Let's see how to construct an all caps virtual
font. According to Figure 1, we need a v p l file to
edit; where does it come from? We can start with the

t f m file and use tftopl to create a p l file. Since the

virtual font description is a superset of the t f m font

description, we can use this file as a starting point.

So we can use the command t f t o p l cmr l2 . t f m

cmrl2ac. v p l to get started on a 12 point cmr all
caps font.

The new file can be edited; the structure
is strictly defined and not too hard to follow.

The first few lines will contain some preliminary

information about the font. This is followed by
a short list starting with (FONTDIMEN (these are

the same dimensions described in The THbook by

Knuth (1990, page 433)). Then there is a long
list under (L IGTABLE and finally a list of the 128

different character entries, each of which starts with

(CHARACTER.

Within each list several types of objects are

described: (LABEL, (L IG , and (KRN, for example,
start the description of a label, a ligature, and a
kern. Similarly (CHARACTER, (CHARWID, (CHARHT,

(CHARDP, and (CHARIC start the description of a
character, and its width, height, depth and italic

correction. The object is usually followed by a
parameter: 0 40 is the octal number 40, D 32 is

the decimal number 32, C a is the (ASCII code of
the) character "a", and R. 9791565 is a real number

as a multiple of the design size (which is after
(DESIGNSIZE as one of the first entries of the v p l

file). In our case the design size is 12 points, so the

real number has the value of 11.75 points. Finally,
there will be matchmg)s to finish the description.

So now we can interpret the text of the v p l file:

(LABEL C f)

(L I C C i 0 14)

(L I C C f 0 13)

(L I C C 1 0 1 5)

(KRN 0 47 R 0.069734)

(KRN 0 77 R 0.069734)

(KRN 0 4 1 R 0.069734)

(KRN 0 5 1 R 0.069734)

(KRN 0 135 R 0.069734)

(STOP)

means that the we are describing the character "f",

that there is a ligature with the character "in and the

pair is replaced by the character with ACSII code octal

14; there are two more similar ligatures; next we see
that when "f" is followed by the character whose

ASCII code is octal 47 (the " ' " character), there is a

kern of .069734 design units (a positive kern means

that the letters are actually being spread apart), etc.

Similarly,

(CHARACTER C f

(CHARWD R 0.299187)

(CHARHT R 0.694444)

(CHARIC R 0.069734)

(COMMENT

(L I G C i 0 14)

(L I C C f 0 13)

(L I C C 1 0 15)

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Michael Doob and Craig Platt

(KRN 0 47 R 0.069734)

(KRN 0 77 R 0.069734)

(KRN 0 4 1 R 0.069734)

(KRN 0 5 1 R 0.069734)

(KRN 0 135 R 0.069734)

1
1

means that the character "f" has width, height, and
italic correction as given. Since (CHARDP doesn't
appear, its value will be zero. Notice that it is
also possible to have comments. In t h s case, the
ligature and kerning information is repeated as a
convenience.

Now let's add some new instructions to the v p l

file to make our all caps font. First we add

(MAPFONT D 0

(FONTNAME cmrl2)

(FONTCHECKSUM 0 13052650413)

(FONTAT R 1.0)

(FONTDSIZE R 12.0)

1
before the (LIGTABLE. We are defining a font that
can be used later: it means that font 0 refers to
the font cmrl2 whch has the given checksum (note
that this value is part of the output from tftopl; we
need only copy it into place). The design size of the
font is 12 points with a scaling factor of 1.

To replace the "f" entry by the "F" entry we
replace the description of the character given above
with

(CHARACTER C f
(MAP

(SELECTFONT D 0)

(SETCHAR C F)

1
1

and that's it. Of course since we have no given
values for CHARWID, CHARHT, CHARDP, and CHARIC,

they all have the default value of 0. Unless we want
all the characters to print one atop the other, this is
undesirable. The correct values for "Fnare given in
the (CHARACTER C F listings, so we can just copy
them into place. Now we have

(CHARACTER C f
(MAP

(SELECTFONT D 0)

(SETCHAR C F)

1
(CHARWD R 0.638999)

(CHARHT R 0.683 3 3 3)

1

If we do this for the other letters, we have then
made the desired replacements. T h s takes only a
few minutes with a smart editor.

There are a few other thngs to do: the ligature
and kerning information still corresponds to the
original font. In our case there are only three
ligatures that need to be deleted: ff, fi, and fl. So we
take those lines out of the (LIGTABLE listing. We
also have the kerning for the old letters; we replace
it with the corresponding upper case entries; as it
happens, there are no kerns for "F", so all of the
lines of the original entry

(LABEL C f)

(LIG C i 0 14)

(LIG C f 0 13)

(LIG C 1 0 1 5)

(KRN 0 47 R 0.069734)

(KRN 0 77 R 0.069734)

(KRN 0 4 1 R 0.069734)

(KRN 0 5 1 R 0.069734)

(KRN 0 135 R 0.069734)

(STOP)

are deleted. Sometimes large all caps are typeset
without kerning (yuk!). If desired t h s could be
part of the virtual font parameters. Track kerning
(the addition of a small uniform amount of space
between letters) could also be done by changing
CHARWD appropriately. Now we're done with the
editing of the v p l file.

We now run
vptovf cmrl2ac.vpl cmrl2ac.vf cmrl2ac.tfm

and the v f and t f m files are ready to go (of course
these files must be in directories where TEX and the
device drivers will look for them).

The TEX fragment

\ font\ac=cmrl2ac

\ac
The $ 1A1 $ norm o f $ \ x i $ i s

$\sum-{i=l)A\i n f t y \ x i - i $.
will now work properly.

The construction of the font is really quite easy
once the proper pieces are assembled. There is a
bonus for our production work. We must process
files from authors that are in plain TEX, LATEX, and
AM-TEX, among other variants. The virtual font
gives a single solution that works with all macro
packages. This is an important benefit.

A small caps font. The problem with designing
a small caps font within TEX has been addressed
by Hendrickson (1990). Of course if you have
cmcscl0. m f you can generate a Computer Modern
small caps font using METAFONT. But for other

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Virtual Fonts in a Production Environment

sizes or families the virtual font mechanism is again
almost trivial. To construct, for example, a small
caps font using the Postscript Times-Roman family,
the procedure is hardly different from the first
example. Suppose that rp tmr. t f m is used by TEX
to typeset Times-Roman, and the small caps should
be 25% smaller than the upper case caps. It is only
necessary to define two fonts in the v p l file:

(MAPFONT D 0

(FONTNAME rptmr)

(FONTCHECKSUM 0 24360352060)

(FONTAT R 1.0)

(FONTDSIZE R 10.0)

1
(MAPFONT D 1

(FONTNAME rptmr)

(FONTCHECKSUM 0 24360352060)

(FONTAT R 0.75)

(FONTDSIZE R 10.0)

1
The editing of the v p l file proceeds almost

exactly as before starting with

\(CHARACTER C F

(MAP

(SELECTFONT D 0)

(SETCHAR C F)

1
1

and

\(CHARACTER C f
(MAP

(SELECTFONT D 1)

(SETCHAR C F)

1
1

There is a question as to which size accents to
use: they can come from the larger or smaller font.
You have to pick one (we use the smaller size).

One font, two uses. When our journals are ready to
print, we send a Postscript file to The University of
Toronto Press for h g h resolution printing, binding
and mailing. Since this is over 1500 lulometres from
our office, some care must be used to make sure
that all the files are correct. Rerunning pages on a
high resolution printer is expensive. In addition, we
cannot reload fonts to replace ones that are resident
on the printer in Toronto.

A consequence of t h s arrangement is that
we must use Times-Italic for both italic text and
mathematical symbols. T h s creates a number of
problems with intersymbol spacing. For example,
the letter "f" as text would normally extend out

of its t f m bounding box both on the left and on
the right. Normally the lower left tail will hang
under the preceding letter. Similarly, the "J" and "p"

also have tads that hang out of the bounding box.
As a consequence, in expressions llke fAp and
$\bi g l (f $ the symbols will almost bump into each
other. The situation can be greatly improved by
adjusting both the position w i t h and the width of
the bounding box. We have already seen that we can
use CHARWD to change the width of the bounding box.
Similarly there are commands MOVEUP, MOVEDOWN,

MOVERIGHT and MOVELEFT to adjust the position
withn the bounding box. Using our example from
cmrl2 (with a design size of 12 points), we could
move the letter "f" 1.2 points to the right using

(CHARACTER C f

(CHARWD R 0.299187)

(CHARHT R 0.694444)

(CHARIC R 0.069734)

(MAP

(SELECTFONT D 0)

(MOVERIGHT R 0.1)

(SETCHAR C f)

1
1

In effect, the virtual font allows us to make
microadjustments to the fonts in the printer in
Toronto. In practice t h s has been extremely useful.

Character rearrangement. Several special alpha-
bets are common in mathematical expressions. It
is normal to use some type of script or calligraphic
font, something like Fraktur or BlackLetter, and
"blackboard bold" characters. Coding is simplified
if, like the \ ca l control word in plain TEX, control
words \Bbd or \Frak can be defined to use letters
that appear in their natural ASCII position.

In our case we are given these special characters
as part of a special (proprietary) symbol font from
the University of Toronto Press. There are upper
case "blackboard bold" letters and both upper and
lower case Fraktur characters. These letters are
scattered around and do not appear in their natural
order, much less in their ASCII position.

It's easy to see how to solve t h s problem. Just
define two new virtual fonts, one for each typeface.
The construction is essentially the same as for the
all caps font.

There is an extra advantage to t h s approach
The "blackboard bold" characters are usually only
defined for uppercase letters; sometimes the letter
"k" and the number "1" are also included. Fraktur
is only used for upper and lower case letters. If one

tries to use an undefined character, say {\Bbd 21,

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 2 79

Michael Doob and Craig Platt

there will be no tfm entry, but TEX wdl process the

file anyway. No character will appear in the text. On

the other hand, an entry in the vpl file like

(CHARACTER C 2

(CHARWD R 0.7)

(CHARHT R 0.8)

(MAP

(SETRULE R 0 . 8 R 0.7)

1
1

will cause a big slug to be printed; it will be evident

that somethmg is wrong.

It's possible to remap a Postscript font so that
it will match each character in the cmr family. T h s

separates TEX problems from external font problems

and can simplify some macro implementations.

Lines above, through and below. TEX provides two

ways of putting lines over characters. The \bar
control word will put a line of a particular size over

a character, while the \over1 i ne control word will

put a (generally longer) line as big as the bounding
box. Now it happens that in the PostScript Times-
Italic font there is an accent that can be used with

the \bar command. Unfortunately it is very narrow

and while it is acceptable for use over the dotless

i \imath, it looks terrible over, say, the letter "M".
Also, \over l i ne is too big because of the large

bounding box for upper case Times-Italic letters.

The solution is simple: just replace the given bar
by a bigger one! This is a special case of adding
horizontal and vertical rules to a character.

Let's go back to our example from the cmrl2

font. Suppose we want to put a line above the letter
"1" in our all caps font. We only need adjust the vpl
file:

(CHARACTER C 1

(MAP

(SELECTFONT D 0)

(PUSH)

(SETCHAR C L)

(POP)
(MOVEUP R 0.683333)

(MOVEUP R 0.1)

(SETRULE R 0.03 R 0.6118)

1
(CHARWD R 0.6118)

(CHARHT R 0.683333)

1
One might visualize this as a pen moving to different

positions. Several steps have been followed: the

character "L" was set as before, the position was

popped back to original starting point, the position

was moved up the height of the letter and then

moved up a little more, and finally a rule was
set with height R 0.03 (0.36 points) and width R

0.6118 (the width of the letter). h7ith appropriate
adjustments to the dimensions, all of the letters

which look badly with \over1 i ne and \bar can be

replaced by a better loolung substitute. It's even
possible to have a font in which every italic letter
has its own overline form.

It is also trivial to make a "strike through" font
where each letter has a horizontal line through it.

These are sometimes used in contract revisions to

indicate deleted material. A little care with positive

kerns will be needed if the strikethrough lines are
to meet for consecutive letters.

The same principle allows the construction of

an underlined font; it's even easy to include a gap

for the descenders.

Some special characters. The PostScript Times-

Italic font has a dotless i but no dotless j. Even
this problem is easy to solve using a virtual font.

Using the cmrl2 example once more, consider the
following addition to the vpl file:

(CHARACTER C j

(MAP

(SELECTFONT D 0)

(PUSH)

(SETCHAR C j)

(POP)
(SPECIAL " 1 setgray

1 . 5 7.5 1 . 5 0 360 a rc f i l l)

1
(CHARWD R 0.503005)

(CHARHT R 0.683333)

1

The (SPECIAL command works exactly like \spe-
ci a1 in the TEX file. Whatever follows is passed on

to the device driver for processing. In this case (for

dvips) it is a PostScript command that paints a little

filled white circle right over the dot of the letter.

There is, however, a problem with this method.
If an accent is put over the dotless j (and why
else would the dotless j be used?), the accent is

printed first and the letter next; if the accent is

unfortunate enough to hit the dot over the j, then

it will be erased along with the dot. One solution

is to print the dotless j first using an \ r lap , and
then essentially print the accent over a phantom

of the same character. A better solution has been

provided by Sebastian Rahtz (who also discovered

the original problem). It uses PostScript to clip the j
at the height of a dotless i:

2 80 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Virtual Fonts in a Production Environment

(CHARACTER 0 32 (comment do t l e s s j) Bibliography
(CHARWD R 278.00)

(CHARHT R 4 58.00)

(CHARDP R 217.00)

(CHARIC R 0.00)

(MAP (SELECTFONT D 0)
(SPECIAL ps: gsave newpath 0 0

moveto (\31) t r u e charpath

f l a t tenpath pathbbox

/IHeight exch def pop pop pop

g re s to re gsave

newpath 0 0 moveto (\ 152)

t r u e charpath f l a t t enpa th

pathbbox pop exch /]Depth
exch def

/]Right exch def /]Left exch def

g re s to re gsave newpath)

(PUSH)

(MOVEDOWN R 217.00)
(SPECIAL ps:]Left]Depth rmoveto

ILef t neg]Right add 0 r l i n e t o

0]Depth neg IHeight add r l i n e t o

ILe f t neg]Right add neg 0

r l i net0
0]Depth neg IHeight add neg

r l i net0 cl osepath c l i p)

(POP)
(SPECIAL ps: (\152) show

gres tore)

1
1

Hendrickson, Amy. "Getting T~xnical: Insights into
TEX macro writing techniques." TUGboat, 1 l(3),

pages 359-370, 1990.

Hosek, Don. "Siamese TEX: Joining dvi Files at the

Hip and Other Novel Applications of VF files."

TUGboat, 12(4), pages 549-553, 1991.
Knuth, Donald E. The Tgbook (nineteenth printing).

Reading, Mass.: Addison-Wesley, 1990.

Knuth , Donald. "Virtual fonts: More Fun for Grand

Wizards." TUGboat, 11(1), pages 13-23, 1991.

Schrod, Joachim. "The Components of TEX."
available via anonymous f t p on the CTAN servers

in the documentation directory.

Walsh, Norm. "The VFtoVP Processor." (output of

WEAVE applied to VFtpVP. web)
/pub/norrn/docs/web/vftovp.tex on the server

i b i s . cs . umass. edu, 1993.

Conclusions

A number of applications of virtual fonts have been

presented. The complete list of commands that

may be used in a vpl file is contained in the WEAVE

output of VPtoVF.web. A copy of this output is

available on the internet from Walsh (1993). In fact,
almost every facility was used here; they turned out

to be just what was needed in an actual production

environment. No doubt this reflects positively on

the choice of tools by Donald Knuth and David
Fuchs.

Perhaps the most important benefit has been a
single solution that works over all macro packages.

Virtual fonts have proven themselves valuable; with

wider awareness of their uses, more applications

will undoubtedly become available.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Where Are the Math Fonts?

Berthold K.P. Horn
Y&Y

106 Indian R11
Carlisle
MA 01741

USA

Internet: bkpheai . m i t . edu

Abstract

Everyone knows that there are very many choices for text fonts for use with
TEX, including over 14,000 (fourteen-thousand!) fonts in industry standard Adobe
Type 1 format, plus several hundred in other common formats such as TrueType.
There are, however, relatively few fonts with mathematical symbols, operators,
delirniters, and relations. And very few of these can be used with TEX.

Why So Few?

Right now, there are few basic math font sets for TEX
beyond the following four:

Computer Modern math fonts;

Lucida Math;

Lucida New Math; and

MathXme

One reason there are so few is that there are
relatively few 'math fonts' to start with. But much

more importantly, a 'math font'- as far as TEX is
concerned - is much more than a mere collection
of glyphs, and furthermore, TEX imposes severe and
peculiar constraints on those glyphs. Hence, to be
useful with TEX, a math font set has to be explicitly
designed for TEX. In addition, tailoring a math font
set for use with TEX means that it will most likely
not be very useful for anythng but TEX. This greatly
reduces the incentive for putting in the enormous
work required to create and develop a new math font
set.

What Are the Special Requirements that
TEX Imposes?

The requirement that is least restrictive, and easi-
est to explain, is that TEX requires metric files in its
own particular compact binary format. In the case of
text files, such TEX metric files are quite easy to cre-
ate, containing primarily character advance width,
kerning and ligature information. Tools are avail-
able for creating TEX metric files automatically from
other formats, such as the human readable Adobe
font metric format.

But TEX metric files for math fonts must contain
a lot more. This includes information for each let-

ter on how to position subscripts and superscripts,
and also how to place accents. Furthermore, in the
case of the math extension font, a complex bit of ma-
chnery is needed to link together delimiters of the
same basic shape but different size, and to describe
how even larger delirniters can be constructed by
splicing together partial glyphs. Additional 'font di-
mensions' must also be specified giving information
on where the 'math axis' is, how to place numerator
upon denominator, and so on.

But generating appropriate tfm files is actually
a very small part of the problem.

Constraints on Math Fonts Used with TEX

First of all, a math font must contain information
on how to properly position subscripts and super-
scripts. T h s is done using character width and the
so-called 'italic corrections'. The subscript is placed
at a position determined by the character 'width',
while the superscript is placed at a position deter-
mined by the sum of the character 'width' and the
'italic correction'. Note that t h s means that the
stated character 'width' is not the overall desired
advance width for that character at all - instead the
advance width is the character 'width' plus the 'italic
correction'!

Thls has additional consequences. Normally
TEX uses the difference between the characters
'height' and the stated x-height for the font to adjust
the vertical position of accents. TEX uses the char-
acter and the accent's widths to center the accent
horizontally over the character. Since in the case of
math fonts, the stated 'width' of the character is in
fact not the advance width, TEX'S normal calculation
of accent positions no longer works. To compensate,

282 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Where Are the Math Fonts?

fake 'kern pairs' are introduced - involving a speci-
fied 'skew character.' These do not specify kerning
at all, but instead specify the position of an accent
in math mode. So TEX math fonts must use basic
metric information such as character width and pair
kerning information in non-standard ways. Clearly
use of such a font with applications other than TEX
Mill1 be seriously impacted by this.

Next, large delimiters 'hang off the baseline'
rather than being centered on the math-axis, for
example. That is, the character 'height' above the
baseline is very small, or even zero. This means
that these delimiters are useless for anythng but
TEX. The same goes for large operators, radicals, and
integrals. Consequently, a typical 'math extension'
font is somethng only useful for TEX.

Which brings us to leading. Most applications
compute suitable spacing between lines based on the
ascenders and descenders in a font in order to avoid
glyphs from adjacent lines bumping into each other.
This works fine for a typical text font with capheight
around 0.75 of an em, and descender around 0.25
of an em. It clearly will not work as desired if a
line contains even a single character from a math
extension font, since this might have a descender
between 2 and 3 times an em. But then we already
decided that a math extension font is 'TEX-specific'.
Unfortunately, the same problem applies to a 'math
symbol' font, at least if one sticks to anythng like
the layout of characters using in the CM math fonts.

The reason is that TEX uses the character 'height'
of the 'radical' character as the thickness of the hor-
izontal stroke of a radical. So a radical in a normal
text position would induce an extremely thck top
bar on a square root! So, once again, the 'radical'
symbol has to 'hang off the baseline.' This single
glyph then greatly increases the descender of the
math symbol font and makes it hard to use with
anythng but TEX.

TEX'S algorithms for laylng out mathematical
formulz are truly wonderful and truly complex.
They also contain hard-wired constants and hard-
wired assumptions. These assumption are all rea-
sonable, of course, for Computer Modern fonts, but
may not be appropriate for other fonts. For exam-
ple, it is assumed that the 'math axis' is also the
'delimiter axis'. That is, that the vertical center of
mathematical operators falls at the same level as the
vertical center of the normal size delimiters.

Now, some of the very features described above
as problematic are ones that contribute to TEX'S su-
perb capabilities in typesetting mathematical mate-
rial. So we couldn't do without them. What is un-
fortunate is that these require fundamental changes

to the font itself - rather than just the TEX metric
files - for a math font to be useful with TEX. We
would be able to use many more of the existing math
fonts with TEX if if was just a matter of adding ex-
tra trickery to the TEX metric file! There are already
programs that can create t f m files from afm files for
math fonts, but they only work for fonts that have
been to designed from the ground up with TEX'S very
special requirements in mind.

Other Peculiarities of Fonts for TEX

Fonts designed for use with TEX have some other fea-
tures that make them hard to use with anythmg else.
First of all, they use the control character range (0 -
31), which is not accessible with other applications,
since control characters are used for other purposes.
Special tricks have to be used to work around th s .

Next, fonts designed for TEX do not have a
'space' character in character code position 32,
mostly because TEX uses a clever method for decid-
ing how large a space is really needed. This is also a
serious handicap. Imagine trying to create illustra-
tions and matchmg the nomenclature with the text.
If the text uses fonts designed for use with TEX then
the fonts won't have a 'space' character. It is not that
uncommon, however, for captions to require spaces.

There are many other less obvious problems
like th s . For example, the math symbol font has two
zero width characters ('mapsto' and 'negationslash').
Now in most font metric formats, zero width in the
metrics means there is no character in that position.
In fact, this is even true of the TEX metric format. To
quote the bible:

The w i dth- i ndex should never be zero un-
less the character does not exist in the font,
since a character is valid if and only if it
lies between bc and ec and has a nonzero
w i dth- i ndex.

TEX metric files do not represent widths directly, in-
stead they use an index in a width table, and whle
the zero-th entry in the table is supposed to be zero
width, other entries may also be, and so can be used
to get around the problem.

Clearly, designing fonts to work well with TEX
means they may not be easily useable with other
applications - whch seriously curtails any interest
a font designer might have in such a project.

Some problems can be 'solved' using virtual
fonts, but again, virtual fonts are unique to TEX. If a
font is to be used both in text and in included draw-
ings produced using arbitrary drawing applications,
then 'real' fonts have to be created for the purpose.

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Berthold K.P. Horn

Customer Support Questions

When a foundry sells a text font set, there is very
little needed in the way of installation instructions

or customer support. Text fonts generally are laid
out the same way, and installed the same way. Few

technical question arise, and there is no need for

auxiliary files to 'support' use of the fonts. Customer

calls typically have to do with such trivial matters as

receiving bad diskettes, or fonts being for the wrong
platform.

Not so with math font sets for TEX! Aside from

TEX metric files, it is expected that the vendor supply

TEX macro files that make it easy to 'switch' to the
new font set (the assumption being that one always

starts with Computer Modern). There is also a need

for information on how to create new TEX 'formats'
that use the new fonts. And lots of explanatory ma-

terial in case there are any differences in layout with

respect to the way Computer Modern happens to

work. Typically the support files require more space

than the fonts themselves, and the documentation
is substantial.

Customer support can be a serious drain on re-
sources. Much of this is end-user education, since

literature about TEX is almost totally focused on use

of bitmapped Computer Modern fonts, and some
still find it hard to accept that (a) TEX can be used

with fonts other than Computer Modern, (b) TEX can

be used with fonts that are not in pk bitmapped

form, (c) Computer Modern fonts are available in
formats other than bitmapped pk files. And the ven-

dor needs to be ready to forever explain why a math

font set is not exactly like the Computer Modern
math font set.

All of this is made more difficult by total lack of

standardization of DVI processors in the important

areas, such as font encoding and font naming. (We
won't even mention figure inclusion!) A great deal
of the auxiliary information that has to be provided

is there because different drivers require different
types of 'configuration' information, and some even

use their own unique formats for the basic metric
information. In addition, the capabilities of DVI

drivers to deal with fonts in scalable outline form

(some force the user to resort to virtual fonts), and
the abilities to reencode fonts to a user specified en-

coding, are often limited, and typically not properly
documented.

Conclusions

The market for fonts in general is huge, but the mar-

ket for TEX fonts is tiny. Whlle Microsoft has already
sold several million copies of their first TrueType

font pack, the market for TEX-specific fonts at the

moment is probably only in the thousands. Develop-

ment costs for fonts that are not TEX-specific can be

spread over a thousand times as many users! Ide-

ally then, TEX should be able to easily use fonts in
all sorts of formats developed for other purposes.

Conversely, fonts developed for use with TEX should

be usable with other applications.

The reason we do not see use of a much wider

variety of fonts in TEX, is that fonts used for text

and math should harmonize, hence the number of

choices is really restricted by the number of 'math
fonts' available for use with TEX. So the limit on the

number of math fonts that work with TEX is a serious

obstacle to the use of a wider variety of fonts.
If we become more flexible in what we have TEX

do, then we can latch onto the express train of devel-

opment of font technology -if, on the other hand,

we refuse to acknowledge there are useful ideas out-
side the TEX world, then we will miss it.

284 TUGboar, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A PostScript Font Installation Package Written in TEX

Alan Jeffrey
School of Cognitive and Computing Sciences
University of Sussex
Falmer
Brighton
BN1 9QH

UK
Internet: a1 an jeecogs. susx.ac. uk

Abstract

T h s paper describes a font installation package written entirely in TEX. It can

parse Adobe Font Metric and Font Encoding files, and convert them into Prop-

erty List and Virtual Property List files, for processing with p l t o t f and vptovf .

Since it is written in TEX, it is very custornizable, and can deal with arbitrary font
encodings, as well as mathematics fonts.

Introduction

This paper describes f o n t i n s t version 0.19, a pro-

totype font installation package for PostScript fonts

(or any other fonts with font metrics given in Adobe

Font Metric format). This package:

Is written in TEX, for maximum portabhty (at

the cost of speed).

Supports as much of the Cork encoding as
possible.

Allows fonts to be generated in an arbitrary

encoding, with arbitrary 'fake' characters,

for example, the 'ij' character can be faked if

necessary by putting an 'i' next to a 'j'.

Allows caps and small caps fonts with letter

spacing and kerning.

Allows kerning to be shared between

characters, for example, 'ij' can be kerned
on the left as if it were an 'i' and on the

right as if it were a 'j'. This is useful,

since many PostScript fonts only include

kerning information for characters without
diacriticals.

Allows the generation of math fonts with

nex t l a rge r , varchar, and arbitrary font

dmensions.

Allows more than one PostScript font to

contribute to a TEX font, for example, the 'ffi'
ligatures for a font can be taken from the

Expert encoding, if you have it.

Automatically generates an f d file for use with

version 2 of the New Font Selection Scheme.

Can be customized by the user to deal with

arbitrary font encodings.

The most important difference between t h s package

and other PostScript font installation packages (such
as Rokicki's (1993) afm2tfm, used in Rahtz's (1993)

psnfss) is that it is written in TEX rather than C,

and so can be more easily customized by the user to

deal with non-standard encodings and mathematical

fonts. At the moment, only the T1 (Cork) encoding

is supported, but mathematical fonts will be added
once an 8-bit font standard can be agreed upon.

Usage

There are four ways to generate fonts using the
f o n t i n s t package:

The simplest method to install the 'varda'
fonts (Times, Courier and Helvetica) with

the T1 (Cork) encoding is to run TEX on
fon tvan i . tex.

If you want to install other TI fonts, you can
edit fon tvan i . t e x to create a TEX file which

installs your fonts.

a Alternatively, you can run TEX on the lile

f o n t i n s t . t e x and get an interactive prompt,

wbch asks you for details on the fonts you

want to install.

If you want to install some fonts in a

non-Cork encoding, you can create new

encodmg files. These consist of: a macros file,

a PostScript encoding vector, and a 'fudge' file

containing all the information that TEX needs

that isn't contained in the afm lile.

In each case, the f o n t i n s t package creates a nurn-

ber of files:

filename. p l contains the Property List of each

PostScript font. You should convert it to a TEX

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 285

Alan Jeffrey

font metric with pl t o t f , and then delete the
pl file.

filename. vpl contains the Virtual Property
List of each TEX font. You should convert it

to a TEX font metric and a Virtual Font with

vptovf, and then delete the vp1 file.

filename. f d contains the LATEX Font

Definitions for each family. If you are using

version 2 of the New Font Selection Scheme,

you can use these to access the font family by
saying \ font fami 1 y{family name}.

filename. a tx is a temporary file containing
a translation of an afm file into a syntax that

can be read by TEX, and can be deleted.

filename. e tx is a temporary file containing

a translation of a PostScript encoding vector
into a syntax that can be read by TEX, and can

be deleted.

Vanilla Fonts

To install the vanilla fonts, you just copy the follow-

ing afm files into a directory read by TEX, and run TEX
on fontvani . tex.

Ti mes-Roman Ti mes-Ital i c

Ti mes-Bo1 d Times-BoldItalic

Courier Couri er-Obl i que

Courier-Bold Courier-Boldoblique
He1 v e t i ca Helveti ca-Obl i que

Helveti ca-Bold Helveti ca-BoldObl ique

This installs the Times, Courier and Helvetica famil-

ies, in bold and normal weights, with roman, italic,
and small caps variants. If you would like to install

other PostScript fonts, the simplest thing to do is
edit fontvani . tex. For example, to generate the

Palatino fonts, you can say:

\makevanilla{ppt}

{Pal a t i no}{Palati no-I tal i c}
{Pal a t i no-Obl i que}{Pal a t i no-Bol d l
{Pal a t i no-Bol dI ta1 i c}

{Pal a t i no-Bol dObl i que}

Prompts

When you run TEX on f o n t i n s t . tex, you Mill1 be

prompted for mformation about the fonts you are

going to install. For each font family, you can specify

a number of TEX fonts, which can in turn be built

from a number of PostScript fonts. For example, the
Times Roman (ptm) font famdy consists of the fonts:

ptmrq roman, medium weight.

p t m r i q italic, medium weight.

rn ptmrcq caps and small caps, medium weight.

ptmbq roman, bold weight.

ptmbi q italic, bold weight.

rn ptmbcq caps and small caps, bold weight.

Each of these fonts may be built from more than

one PostScript font, for example, ptmrq might use

Times-Roman for most characters, and the Expert

set for the ffi and ffl Ligatures.
When you run TEX on f o n t i n s t . t e x you are

prompted for information on the font family you

would llke to install. For each famdy, you are promp-

ted for:

\Fami 1 yName, for example, Adobe Times
Roman is ptm.

\Fami 1 yEncodi ng, for example, TI.

Each famly can include a number of fonts, and

you will be prompted for mformation about each
of them:

\FontName, for example, Adobe Times Roman

is ptmrq.

s \FontEncodi ng, for example, Tlul c (for T1
upper and lower case) or Tlcsc (for T1 caps

and small caps).

\Fontweight, for example, m (medium) or b

(bold).

\Fontshape, for example, n (normal), s l
(oblique), i t (italic) or s c (caps and small

caps).

Each TEX font can be built from a number of Post-
Script fonts. For each Postscript font you will be
asked for:

\AFMName, for example, Adobe Times is

Ti mes-Roman.

\AFMShortName, for example, Adobe Times
Roman is ptmr0.

\AFMEncodi ng, for example, adobe (for Adobe

Standard Encoding) or expert (for Adobe
Expert Encoding).

Using font i n s t in Other Macro Packages

If you run TEX on fon t i nst . tex, you will be promp-

ted interactively about the fonts you want to in-
stall. Sometimes this is not what you want, for ex-
ample, fontvani . t ex uses the macros defined in

fon t i n s t . t e x without running the prompt. This is

achieved by having font i nst. t ex check to see if a
macro \noprompt is defined. So if you want to use

fon t i n s t . t e x yourself, you should say:

\def\noprompt{!}

\ input fon t i n s t

The most useful commands given by fon t i n s t . t ex

are:

286 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A PostScript Font Installation Package Written in TEX

\makef ami 1 y {commands} This generates
a font famdy named \Fami 1 yName with
encodmg \Fami 1 yEncodi ng using the
\maketexfont commands.

\maketexfont{commands) T h s generates
a TEX font named \FontName with encoding
\FontEncoding, weight \Fontweight and
shape \Fontshape using the \makerawfont

commands.

\makerawfont T h s generates a PostScript
font named \AFMName with short name
\AFMShortName and encoding \AFMEncodi ng.

For example, to generate a family consisting of just
Adobe Times Roman you could say:

\def\FamilyName{ptm}

\def\Fami 1 yEncodi ng{T l }

\makefami 1 y{

\def\FontName{ptmr}

\def\FontEncoding{Tlul c }

\def\FontWeight{m}

\def\FontShape{n}

\maketexfont{

\def\AFMName{Times-Roman)

\def\AFMShortName{rptmr}

\def\AFMEncodi ng{adobe}

1
1

Installing a New Encoding

The main advantage of using a font installation pack-
age written in TEX is that it is very custornizable. To
install a font in a new encoding, you just have to
generate a new enc file, a new mac file and a new
f u d file. The enc file is just a Postscript encoding
vector, as described in the PostScript Language Ref-

erence Manual. The mac file just defines any macros
you may wish to use in the f u d file. The most im-
portant file is the f u d file, that contains all the font
Information for a TEX font that is not present in the
afm file. This includes:

\afmuni t s is the length of one afm unit.
There are usually 1000 afm units to the
em-quad.

\i t s l an t is the italic slant, measured in
points. T h s is normally assigned to font
dimension 1.

\xhei gh t is the x-height of the font,
measured in afm units. This is usually
assigned to font dimension 5.

\capheight is the capital height of the font,
measured in afm units.

\ascender is the ascender height of the font,
measured in afm units.

\under1 i n e t h i ckness is the rule width of
the font, measured in afm units.

\i f f i xedpi t c h is true if the font is
monoweight.

\getchar{glyph} globally sets the following
parameters:

- \chardp, \charht , \ char i c and
\charwd are the dimensions of the
character and its italic correction. These
are given in points.

- \map is a token list consisting of the MAP

instructions used to generate the glyph.
For example, to set character 123 from
font 0, followed by character 45 from
font 2 , \map would be set to:

(SETCHAR D 123)

(SELECTFONT D 2)

(SETCHAR D 45)

- \ s t a r t f o n t is the font number the
character expects to start in, and
\ s t op fon t is the font number the
character expects to stop in. For
example, in the above case, \ s t a r t f o n t

would be 0 and \ s t op fon t would be 2.

The commands that can be used to change the TEX
font generated by f o n t i n s t . t e x are:

The coding scheme name. \codi ngscheme{scheme name} sets the
coding scheme of the font, for example:

The boundary character.

The font dimensions.
\cod i ngschemeCEXTENDED TEX FONT

ENCODING - LATIN}
The ligatures.

\boundarychar{glyph} sets the boundary
The va rcha r and n e x t l a r g e r entries.

character of the font, for example:
How to kern glyphs such as 'ffi' whch aren't
given kerning information in the afm file. \boundarychar{percent)

How to fake glyphs such as 'ffi' which aren't \ f o n t d i mens{font dimension commands}

defined i n the Postscript font. sets the font dimensions of the font. Within
the font dimension commands, you can say

When an afm file is read, the following parameters
\parameter{number}{dimen} to set each

are set:
parameter. For example:

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 287

Alan Jeffrey

\ fontdimens{

\getchar{space}

\pa ramete r { l } { \ i t s l an t }

\parameter{2}{\charwd}

\parameter{3}{.5\charwd}

\parameter{4}{.33333\charwd}

\parameter{5}{\xheight\afmunits}

\parameter{6}{1000\afmunits}

\parameter{7}{. 33333\charwd}

1
\l i gature{glyph}{ l ig commands}

sets the ligatures for a glyph. W i t h

the lig commands, you can say

\I i gCglyph1 {glyph} {type}. The ligature
type is given in p l syntax, that is one of:

LIG /LIG /LIG> LIG/

LIG/> /LIG/ /LIG/> /LIG/>>

For example, the ligatures for 'f' could be
given:

\l i g a t u r e { f } {

\i f f i x e d p i t ch \e l se

\ l i g { i } { f i } { L I G }

\I i g { f l { f f l C L I G l

\ ~ i g ~ ~ l ~ f ~ l ~ L I ~ l
\ f i

\I kern ig lyph} {lkern commands} sets

how characters should kern on the left.
Within the lkern commands, you can use

\ sca l e{number}{commands} to set the

scale, and \do{glyph} to set a kern. For
example, to say that 'i' and 'ij' should kern on

the left like 'i' you can say:

\I k e r n { i } {

\ s ca l e { l } { \ do { i } \do { i j}}

1
The \ s ca l e command is provided for fonts

such as caps and small caps, where you may

wish to scale the kerning of a character. For

example, to say that 'T' should kern 85% as
much as 'T' you could say:

\I kern{T}{

\seal e C l l { \ d o { T l l
\sca1 e{O. 85}{\do{Tsmal l}}

1
T h s command is useful for glyphs m e 'A',

whch most Postscript fonts do not include
kerning information for.

\ r ke r n is just like \I kern but for kerns on

the right. For example, to say that 'ij' kerns on
the right like 'j' you can say:

\ r k e r n C j l {

\sca1 e { l l { \ d o C j l \ d o { i 131
1
\ I r k e r n combines an \I kern and a \ rkern.

For example, to say that '%' should kern like a

word boundary, you can say:

\ l r ke rn {space} {

\ sca l e{ l } { \do{percent } }

1
\next1 arger{glyph} {glyph} specifies the

next element in a NEXTLARGER list. For

example, to say that C is followed by 1 you
can say:

\nex t la rger { tex tsum}{d i splaysum}

\varchar{main}{top}{mid}{rep}{bot} gives

a VARCHAR entry for a glyph. If an entry is

empty, it is omitted. For example, to say how

large left brackets are built, you can say:

\varchar{ lbracktop}{ lbracktop}

{I brackmi d } { } { l brackbot}

\defchar{glyph){commands} gives the

default defmtion of a glyph. If the glyph is

not defined in the Postscript font, then this
definition is used instead. The commands

should define the parameters given above for

\getchar . For example, the 'compound word
mark' character is defined:

\defchar{compwordmark}{

\ g l oba l \charht=Opt

\ g l oba l \charwd=Opt

\ g l oba l \chardp=Opt

\ g l oba l \ char i c=Opt

\ g l obal\mapCI

1

In giving the default character definitions,

it is useful to define macros in the mac file.

For example, T l . mac defines a command

\doubl echar which joins characters together.
For example, T l u l c . f u d contains:

\defchar{fi}{\doublechar{f}{i}{O}}
\ de f cha r { f f i } { \ doub l echa r { f } { f i } {O } }

This says that 'fi' can be faked by putting an

'f' next to an 'i', and that an 'ffi' can be faked

by putting an 'f' next to an 'fi'. Since fakes

can be nested, t h s means that some fonts Milll
generate 'ffi' out of an 'f', an 'f' and an 'i'.

\ m i s s i ngchar is the character used if there

is no sensible fake, for example, for '1'. The
default is a half-em black box 'a'.

288 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A PostScript Font Installation Package Written in TEX

An Overview of f o n t i n s t . tex

The most important file in the font i nst package is

f o n t i n s t . tex, which provides TEX macros for pars-

ing afrn and enc files, for faking characters, and for

writing p l and vpl files. The most important com-
mands are:

\makeatx{filename} reads filename. afrn and

writes the same information to filename. a tx ,

in a form whch can be parsed more easily by

TEX. For example, a file which begins:

StartFontMetrics 2 . 0

FontName Ti mes-Roman

I t a l i cAngl e 0 . 0

IsFixedPi tch f a l s e

wdl be converted to a file which begins:

\fontname{Ti mes-Roman}
\ i t s l ant=Opt

\ f ixedpi tchfa l s e

T h s macro is an interesting example of

writing a parser in TEX, and contains a lot

of hacking with \catcodes. One annoying

feature is that afrn files give italic angles in

degrees, where pl files use gradients. To
convert from one to the other, we use Phil

Taylor's (1989) excellent trigonometry macros

\makeetx{filename} reads filename. enc and

writes the same information to filename. etx,
in a form which can be parsed more easily

by TEX. For example, an encoding file whch
begins:

/TlEncoding [/grave /acute . . .
will be converted to a file which begins:

\characternumber{grave}{O}

\characternumber{acute}{ l }

This is quite a simple parser.

\readafm{afm}{enc}{pl) reads afm. a tx

and enc. e t x (makmg them if necessary), and

stores the results in macros, whch are used
by \makepl and \makevpl.

\makepl {encoding} {commands} reads in the

afm files given by the commands and writes a

pl file. For example, the 'raw' Times-Roman

font can be generated with:

\makepl {adobe}{

\readafm{Times-Rornan}{adobe}{ptmrO}

1
\makevpl {encoding} {commands} reads

in the afrn files given by the commands
and writes a vpl file. It also reads the file

encoding. fud to find the font fudges. For

example, the Times-Roman font can be

generated with:

\makepl {Tlul c } {

\readafm{Times-Roman}{adobe}{ptmrO}

\readafm{Ti mes-Expert}{expert} {ptmrx}

1
The code for these macros is fairly gory, especially

the parsers, since TEX was never really intended for

these tasks!

Examples

Table 1 shows the Times Roman font in T1 encoding,

as produced by the fon t i nst package. Note that
there are a number of missing characters:

o J n d r J ~ ~ a p

Four of these characters (D. P, a and b) are available

in the Times font, but are not in the default Adobe

encoding. These characters can be used if you have
a dvi to Postscript converter such as dvi ps which

can re-encode fonts. Unfortunately, re-encoding the

font to use the IS0 Latin-1 encoding results in the

loss of the characters:

f i f l < > " " , , L I G c e - -

T h s means that any encodmg which we re-encode

the raw PostScript fonts with is going to have to be
non-standard. Sigh.. .

Figure 1 shows what can be acheved with TEX

and Postscript.

Bugs

The fon t i n s t package is currently avdable for P-
testing, and has a number of 'features' which should
be dealt with at some point.. .

The documentation is very scrappy, and the

code is badly commented.

It takes seven minutes to generate a font on a

Macintosh Classic.

The interactive prompt is very unfriendly.

The error handhng is non-existent (and some

of the errors are rather odd, for example, a

missing enc file Mill1 result in the complaint

'File blah.afm not found.'

The accent positioning in italic fonts is pretty

poor.

Some characters, such as 'Lcaron' (E) are

pretty poor in monoweight fonts.

Producing oblique fonts by optical effects is

not supported. (But I'm not sure t h s isn't a

good thlng!)

Composite character instructions in the afrn

file are ignored.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Alan Jeffrey

The support for math and Expert fonts is
untested, and is awaiting an agreement on
suitable encodings for 8-bit math and Expert
fonts.

I've made some assumptions about the format
of afm files, for example, that italic angles lie
between 0 and 90".

The v p l files generated can have arbitrarily
long lines in them, caused by long \map

instructions. This may cause a problem on
some systems.

This software is available by anonymous ftp from
f tp.cogs.susx.ac.uk in pub/ tex / fon t ins t . All
comments are welcome!

Afterword

After presenting t h s paper at the Aston meeting, I
had a number of requests from potential users of
the f o n t i n s t package. The ability to produce ar-
bitrary encodings, and to tweak the resulting virtual
font seemed quite popular! However, there were a
number of reservations:

The version of the f o n t i n s t package described
here is very user-unfriendly, and is more suit-
able for TEX hackers than end-users.

There is no distinction between the font-
installers interface and the internal details of
f o n t i ns t , which makes upward compatibility
with future releases difficult.

Twealung the virtual fonts is more difficult than
it should be, and involves developing a com-
plete new f ud file for that font.

These points d l be addressed by f o n t i n s t version
l.x, whch will include:

A more user-friendly interface for non-hackers.

A fully-defined font-installer's user interface.

A simple way of over-riding the default virtual
fonts.

Version 1 .x ulll not be upwardly compatible with ver-
sion 0.19. However, future releases will be upwardly
compatible with version 1.x. When version 1.x has
been fully tested, the font-installer's interface will
be submitted to TUGboat.

The f o n t i n s t package described here is cur-
rently available for use by experienced TEX hackers.
Version 1 . x will soon be avadable for use by the rest
of the TEX world.

Bibliography

Adobe Systems. Postscript Language Reference
Manual, 2nd edition. Addison-Wesley, 1990.

Rahtz, Sebastian. Notes on setup of the New Font
Selection Scheme 2 to use Postscript fonts, dis-
tributed with the n f ss2 package, 1993.

Rolucki, Tomas. Dvips: A THDriver, distributed with
dv i ps, 1993. Available for anonymous ftp from
f tp . tex .ac .uk .

Taylor, Phd. "Trigonometry.T~X" in Twax, Septem-
ber 1989. Included in the f o n t i n s t package.

290 TIJGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

A Postscript Font Installation Package Written in TEX

Test of ptmrq a t l 0 p t on June 10. 1993 a t 1533

'002
"

'01 x

'02x

'032

'1 Ox

'llx

-

'6

'24~

'25~

'262

'2 7x

@
H

'30x

'31 x

'322

'33x

<

1

a

1
i

Y

'34x

'35x

Table 1: The Times Roman font generated by f o n t i nst.

A

I

A

E

0

'36x

'3 7x

TUGboat, Volume 14 (1993), No. 3 -Proceedmgs of the 1993 Annual Meeting

>

3

1'

4

i

A

&

"Ox

A

E

fi

u

@

<<

ff

1

c
1

S

i

6

C

B

J

A
13

0

u

ii

ti

>>

fi

C

K

,

E

n

8

z

L

C

F

N

D

L

A
E

0

0

b

13

-

fl

E

M

8

fi

t'
. .
1J

5

e

G

0

A

i

0

u

6

ii

-

ffi

"4x

6

1

i

a

i

A
i

d

Y

6

ii

ffl

e
6

fi

i

A

i

"ix

A2

i

0

5

i2
i

B

f

a:

1

"Ax

"Bx

C
I

(E

SS

o

"Cx

"Dx

F

i'

CE

"Ex

9 I3
"Fx

Alan Jeffrey

4OP
Friday
January 22
1993
Published in London
and Manchester TheGuardian
Businesses press for base rate cut c Pound plunges with fall in production

Jobless total on brink of 3m

Lam" WI h o p iomgaze* W l l h

IhC kl"d you merhan,rm\ onto

ihe n i h a e l l) only an a whole
wauid k lundcd w8Lh md dzd
no, ,hey n o r

Figure 1: Sample output of a TEX document.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Math Font Encodings: A Workshop Summary

Abstract

The math font group is a joint venture of TEX Users Group and the FTEX~ project.
Its aims are to investigate the requirements for mathematical typesetting using
TEX, and to propose and implement new math font encodings whch will satisfy
these requirements. At the 1993 Aston TEX Users Group meeting, we held a
workshop at whch we discussed the needs for new math font encodings, and the
work so far at meeting those needs. This paper is a summary of that workshop,
for the benefit of those unable to attend. The panel consisted of Barbara Beeton,
Alan Jeffrey, Frank Mittelbach, Chris Rowley and Justin Ziegler. There were many
useful questions and suggestions from the audience.

Motivation

The current situation (as discussed by Berthold Horn
in h s stimulating paper Where are the math fonts?)
is that there are over 14,000 text fonts available for
use in TEX, but only six math fonts:

Computer Modern

Computer Concrete and Euler

Lucida Math

Lucida New Math

MathTime

Symbol

Each of these fonts uses different encodings, and
each comes with its own selection of TEX macros.
Although the Cork encoding is rapidly being estab-
lished as the standard encoding for European Latin
text, there is no similar encoding for mathematics.
The result is:

complex ad hoc macro packages for using each
math font.

it is difficult to set mathematics with Cork text,
since the Cork encoding does not include the
upper case Greek.

installing Postscript math fonts such as Math-
ematical Pi is very difficult.

T h s is a bottleneck for uptake of the Cork fonts, and
use of TEX for mathematical setting with anything
other than the Computer Modern fonts.

The math font group (MFG, or Joint R X 3 pro-
ject / TEX Users Group T e c h c a l Worlung Group
on Extended Math Font Encodings to give it its full
title!) was formed in order to develop new encodings
for setting mathematics.

These encodings should be fully upwardly com-
patible with p l a i n TEX, WX, ANS-TEX and AmS-
LATEX. The only effect most users should notice is
that more symbols, and more math fonts will be
available for use in TEX.

Overview

The MFG has developed an outline for a proposed
math encoding, although the details of each encod-
ing have yet to be worked out. There is still plenty
of room for change!

The current math encoding proposal uses:

TI 'Cork' text encoding

MC math core encoding

MX math extension encoding

MSp math symbol primary encoding

MS1 math symbol additional 1 encoding

MS2 math symbol additional 2 encoding

In addition, we are proposing an TS1 'text symbol'
encoding, to hold the text glyphs such as 'i.' that are
currently in math fonts.

Glyphs are being allocated to math encodings
on the grounds of:

Glyph shape. All glyphs of a similar design should
be in the same encoding. For example, all the
Greek glyphs should live together, and the geo-
metric symbols of similar appearance such as
' @ ' and '8' should live together.

Kerning. Any glyphs which may need to have a
kern pair should be in the same encoding. For
example, one common request is for kerning
between ' f' and ' (I , and so these glyphs should
live together. (The situation is somewhat more
complex than th s , since TEX will only kern or
ligature when the first glyph is a math atom
consisting only of a single-character mathord.
See Rule 14 of Appendix G of The THbook for
more details.)

Ligaturing. Any glyphs which may need to ligature
should be in the same encoding.

Orthogonality. Each encoding should use as few
different glyph styles as possible, to minimize
the number of virtual fonts needed. For ex-
ample, the Computer Modern Symbol encoding

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 293

includes roman glyphs, geometric symbols, cal-
ligraphic letters, and dingbats, and so a differ-
ent VF is required for each combination of ro-
man, geometric, calligraphic and dingbat font.
A site with 100 text romans, four geometric
symbol fonts, three calligraphc fonts, and three
dingbat fonts might need 100 x 4 x 3 x 3 = 3600
VFs.

Slots. Some glyphs have preferred slots; for ex-
ample it would be useful if the letter 'A' was
always in slot 65.

None of the encodings Mill1 specify bold or sans
glyphs, since these are expected to be kept in separ-
ate bold or sans math fonts, with the same encoding.
The glyphs whch are most commonly requested in
bold will be placed in the MC encoding, so if many
bold glyphs are used in a document, only one extra
MC-encoded family containing bold glyphs needs to
be used. If few bold glyphs are requested, these can
be set using macros similar to \boldsymbol from
ANS-TEX.

TI encoding

The T1 (or Cork) encoding d l be used for multi-
letter identifiers such as 'log', 'sin' and 'lim'. Using
the T1 encoding allows arbitrary text fonts to be used
for multi-letter identifiers. In many texts t h s will
the same as the text roman, but t h s will not always
be the case (for example Barandregt's The Lambda
Calculus, North-Holland, 1984, has some multi-letter
identifiers set in bold sans!).

This font will not normally be used for anything
other than upper and lower case Latin letters. The
symbol glyphs such as I+', '=' and '/' will be taken
from the MSP encoding.

Although the multi-letter identifier font will be
T1 encoded, it does not necessarily have to be a text
font. In particular it may have the glyph width and
italic correction adjusted to produce good subscript
and superscript positioning, as long as t h s is not to
the detriment of setting multi-letter identifiers.

Family 0 will contain a TI encoded font.

MC encoding

The MC encoding will contain:

The default Latin letters (for example ' f ').

The default numerals (for example '1').

The default punctuation (for example ','I.
The slanted and upright Greek in upper and
lower case (for example 'oc' and 'T').

Other glyphs (such as the math accents and Hebrew)
will be included if there is space!

The font will also contain enough font dimen-
sions to be used as \fam2, since the positioning of
subscripts and superscripts depends much more on
the math core font than the symbol fonts. It may
also contain font dimensions for:

Design size

Suggested script and scriptscript design size

Suggested values for \mathsurround,
\ t h i ckmuski p, \medmuskip and \ t h i nmuskip.

Family 2 will contain a MC encoded font.

MX encoding

The MX encoding will contain the extension glyphs
from cmex and m s q m , plus frequently requested
glyphs such as longer math accents, double brack-
ets, and \bi gsqcap.

Family 3 will contain an MX encoded font.

MSi encodings

The MSP, MS1 and MS2 encodings will contain the
geometric glyphs from cmQ and ms*m, plus fre-
quently requested glyphs such as \mapsfrom. In
addition:

MSp will contain calligraphc upper and lower
case

MS1 will contain open (or 'inline' or 'outline' or
'blackboard bold') upper and lower case

MS2 will contain black letter (or 'fraktur') upper
and lower case

There was quite a lively discussion about what to do
with script upper and lower case! One possibility
is to allow font implementors to replace the calli-
graphic letters by script letters in an MSp font. An-
other is to ask that script letters be provided in T1
encoded fonts. T h s point is still up for discussion.

All of the geometric glyphs used in plain TEX
and mX will be kept in the MSp encoding, so com-
patibility with pl ai n TEX or LATS can be achieved by
loading four families, encoded as T1, MSp, MC and
MX. Compatibility with AmS-TEX or A d - W X can
be acheved by loading six families, encoded as TI,
MSp, MC, MX, MS1 and MS2.

TSI encoding

There are a number of text glyphs that currently live
in math fonts, such as 't' or 'a'. These glyphs will
be put into a 'text symbol' encoding, along with the
Adobe standard and expert glyphs missing from the
Cork encoding, such as ' f' (florin) and ' 1/2'.

The TS1 encoding is not designed to be used in
math mode.

294 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Math Font Encodings: A Workshop Summary

Work to do

At the time of writing, there is still quite a lot of
work to be done!

Propose and document the math encodings.

Implement the math encodings with META-

FONT or virtual fonts.

Provide user interfaces for p l a i n TEX and F@X.

If you would like to help with implementing or test-
ing the new math font standards, please write to:

math-font-request@cogs.susx.ac.uk

We look forward to hearing from you!

o Barbara Beeton
American Mathematical Society
bnb@math.ams.org

o Alan Jeffrey
University of Sussex
alanje@cogs.susx.ac. u k

o Frank Mittelbach
%X3 project
mi t t e l bachemzdmza. zdv. uni -mai nz. de

o Chris Rowley
Open University
c.a.rowley@open.ac.uk

o Justin Ziegler
Ecole des Mines de Saint Etienne
ziegl ereeduc. emse. f r

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

An Application of Literate Programming: Creating a Format for the Bulletin

of the Polish TUG

Wlodek Bzyl
Uniwersytet Gdanski

Instytut Matematylu

Wita Stwosza 57

80-957 Gdansk, Poland

Internet: matwbehal i na. uni v . gda . p l

Tomasz Przechlewski
Uniwersytet Gdanski

Katedra OPD

Arrnii Krajowej 119/121

81-824 Sopot, Poland
Internet: ekotpehali na.univ.gda.pl

Abstract

This article describes the process by which the authors used WEB to create a
format for the Bulletin of the Polish TUG.

Introduction

On establishing the Polish TEX Users Group the
authors were appointed to create its bulletin. One
of the first tasks was creation of a format for the
bulletin. We wanted it to be easily maintained and

fully documented. The format had to be sufficient
to understand, appreciate and later to modify the

code by ourselves and/or others.

It was decided that the format should be coded
in WEB. Knuth's WEB System of Structured Docu-
mentation was thought to fulfill our expectations.

We chose FWEB, a multi-lingual implementation of

WEB by John A. Krommes (Princeton University)
based on Silvio Levy's CWEB.

WEB programs are easily modified to different

environments. Ideally, we should have started with

an existing WEB file and then modified it via a change
file. However, there were not any formats written
in WEB at that moment. To that end we had to

translate to WEB the format of our choice-TUGboat
style. Oddly enough, we became pioneers.

Problem

There are only a few sets of macros for typesetting

bulletins in the public domain (TTN, TUGboat).

The TUGboat format is the best known, the most
widely used one and can be obtained from almost

all archives. TUGboat is designed for only one
language-English. As our format is bilingual we

had to modify TUGboat style. Apart from that, the

modification was necessary because:

CM fonts had to be replaced ~ l t h Polish fonts

which contain Polish diacritical characters;

some parts of the code had to be changed,
some adjusted to get a design that was slightly

different from 77JGboat design; and

the parts of the code unnecessary for our

purposes at that moment had to be removed.

Moreover, taking into account the technology of
printing the bulletin we decided to use the Com-

puter Concrete family of fonts instead of Computer

Modern. It yielded decent results.

Template of WEB program

The @ symbol in the WEB language is an 'escape

character'. It introduces commands. A WEB file has

the form of a sequence of two elements: comments

and code. They are separated by WEB commands
started with @. The skeleton of a WEB file is shown
below:

@Lx

@* T i t l e Some documentation

@A

TEX macros

@* T i t l e more documentation

296 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Creating a Format for the Bulletin of the Polish TUG

@A

more TEX macros

e t c . . .

@* Index .

The parts of the code introduced by the @" sequence

(or @u, @*I, e7':2) are sections (unnamed sections,

subsections etc.).

switch to TEX language

@ symbol

start an unnamed section

start a major section
start a subsection (subsubsection)

begin TEX code

open new output file

Figure 1. List of frequently used WEB commands

Converting to WEB

The TUGboat format originally comes in three files:

tugboa t . cmn, tugboa t . s t y and 1 tugboat . s ty .

All files contain a lot of comments explaining the

code. t ubgu i de. tex, which is separately delivered,
is a kind of a 'user guide' for authors. It is possible

using WEB to combine all the files into one.

Unfortunately, TUGboat format had not been

converted into WEB. So the first thing to do was the
conversion. The process of making a * .web file is

quite simple. One can do thls in the following way:

Change explanatory comments to sections by
removing per cent signs and preceding the

whole text with @ or @* symbols (short com-

ments may be left untouched);

precede macros with @A;

double @ in macros.

The first step is the most important one as the

structure of a document is decided at that moment
(sections, subsections, etc.).

What is WEB

The web file is a structured document. It consists of
documentation and macros simultaneously. A web

file is processed with two preprocessors: TANCLE

and WEAVE. TANCLE strips off documentation and re-

organizes the code. WEAVE produces documentation
in TEX format.

/'

fweave

\

ftangle

Ti3

pzk
Figure 2. WEB data flow

Modifying WEB programs

Both processors, WEAVE and TANGLE, can work with

two input files: web file and change file. A change

file contains data whch override selected portions
of web file. The structure of a change file has the

following form:

ex

. . . o l d l i n e s . . .
@Y

. . . new l i n e s . . .
ez

Any text up to the first ex, and between @z and
ex, will be bypassed (some additional comments are

put there usually).

/helloweb +
/ ',

fweave ftangle

Figure 2. WEB data flow using a change file

The whole process is illustrated with the fol-

lowing example. Let the file he1 1 o .web contain the

following six lines:

@Lx

@* F i r s t example .
@A

\de f \ g ree t i ngs{Hel l o ! }

@* Index .

and the change file he1 1 o . ch adapts it to the Polish
language.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Wlodek Bzyl and Tomasz Przechlewsh

change t o Polish language

ex
\def\greet i ngs(He1 l o ! }

@Y
\ de f \g ree t ings (Cze \ ' s \ ' c ! }

ez

Conclusions

We have found this approach useful in spite of the

fact that we did not use all features of WEB. Named

modules are supported by FWEB, but we did not
use them or the conditional exclusion/inclusion or

macro definitions.

FWEB is available via anonymous f t p from
f t p . pppl . gov: /pub/fweb. It runs on IBM-PC's,
UNIX machnes, and many other systems that

provide an ANSI C compiler.

Bibliography

Knuth, Donald E. T@ the Program. Addison-Wesley

1988.
Knuth, Donald E. Literate Programming. Center for

the Study of Language and Information, Leland

Standard Junior University, 1992.
Kromrnes, John A. The WEB System o f Structured

Software Design and Documentation for C, C++,

Fortran, Ratfor, and TH. User Manual, 1993.

Sewell, Wayne. Weaving a Program. Literate Program-
ming in WEB. Van Nostrand Remhold, NY 1989.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 AnnuaI Meeting

Creating a Format for the Bulletin of the Polish TUG

Appendix

Excerpt f rom the tugboat .web. This wi l l generate

two files: tugboat . cmn and tugboat . s t y .

@z======================================

%%

%% Vers ion 1 . 0

%%

%% W{\l}odek Bzy l , Tomek Przechl ewski

%%
y"/------------------------------------- oo--------------------------------------

%% o r i g i n a l filename="tugboatc.web",
%% vers ion=" l .O" ,
%% date="8-July-1993",

%% f i letype="TeX macros f o r TUGboat" ,
%% ema i l = " I n t e rne t :

%% matwbehal i na. un i v . gda. p l ,
%% ekotpehal i na. un i v . gda. p l " ,
%?A keywords="TUG, tugboat , p l a i n t e x " ,
%% abs t rac t="Th i s composite f i l e con ta ins

%% t h e p la in-based macros f o r p r e p a r a t i o n .

@?: He1 p f u l shorthand

e.1 Changes o f category.

The f o l l o w i n g a l l o w f o r eas ie r changes

o f category. These r e q u i r e t h a t t h e charac te r

be addressed as a control-sequence:

e .g . I\makeescape\/l w i l l

make t h e I / / an escape charac te r .

@O tugboat . s t y

%% l imbo

\def\Wti tl e{GUST. WEB}

@* Stop reading t h i s f i l e i f

i t ' s been 1 oaded a1 ready.

@A

\ifx\tugstyloaded@@\thistubstyle

\makeatother\ i n i ti a1 i z e a r t i c l e

\endi nput

\ e l se

\l et \ tugsty loaded@@\th i s t u b s t y l e

\ f i

\message{File 'TUCBOAT.STY'

\ f i 1 evers ion \space\space <\f i 1 edate>}

@* Load macros common t o \TeX\ and \LaTeX.

@Lx @% s e t t h e g l oba l language t o \TeX

@$: I d e n t i f y t h e ve rs ion .

@A

@O tugboa t . cmn

@A

\ i n p u t tugboat . cmn

@* Some t h i n g s w i t h t h e same names

as i n , o r r e i t e r a t e d from, \AmSTeX.

@A

(3% o v e r r i d e an \AmSTeX\ convent ion

\def\document{}

\message{Fi l e 'TUGBOAT.CMN'

\ f i 1 e v e r s i o n \space\space < \ f i 1 eda te> l .

@* Put i n t h e index commands

w i t h ' a t ' i n s i d e .

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

Jonathan Fine
203 Coldhams Lane

Cambridge

CB1 3HY

England

l.Fine@pmms.cam.ac.uk

Abstract

The thread which runs through this article is the concept of a Finite State

Automaton (FSA). It is introduced as a solution to the problem of how to specify

and code the amount of vertical space to be left between the various type of item
which can be placed upon the page. Several methods of coding FSA are described

and compared. One solution is to store the transition table and other data in the

ligature table of a custom font. The best use of this method requires sofware
tools which cannot readily be programmed in TEX, and also some extensions to

TEX. These are discussed, and the article concludes.

Introduction

TEX forms pages by adding paragraphs and other
vertical material such as skips, penalties, titles and

displayed boxes to a galley, which is broken and

presented to the output routine once sufficient ma-

terial has been gathered. Hand setting of movable
type proceeds in the same way. This article is
focussed on how TEX should be instructed to insert

appropriate vertical space and so forth between the

paragraphs and other textual items. The proper use

of space is essential to good typography.
Here are some spacing rules. Add extra space

around a displayed quotation. Add extra space

before a new section. Just after a section title is
a bad place to break the page, so insert a penalty.

Just before a subsection is a good place to break, so

insert a reward - i.e., a negative penalty.

These rules do not tell us what should be done

if a displayed quotation is followed by a new section.
Should one use both extra spaces, or just one, or

something else? It is common practice to specify

'before' and 'after' space for each element, and to

take the larger of the applicable values when one
element follows another. Of course, there will be

exceptions. Similar considerations apply to lists.
When a section title is immediately followed by a

subsection, is t h s a good place to break the page,

or a bad place? It is important to get these details

right, for they can make or break the document (at
the wrong place).

We shall assume that when a paragraph or

other item X is added to the galley, the vertical

space that should be added to the galley before X

is placed upon it depends only on the sort of item
that X is, together with the sort of item last placed

on the galley. Thus, vertical space rules belong not

to the vertical matter type itself, perhaps in before

and after variants, but to combinations of vertical

matter types, applying when type W is followed
by type X. One can think of this as a relational
approach.

If there are five types of paragraph, A to E, then

there are 2 5 different possibilities AA, AB, AC, A D ,

A E , B A , BB, BC, BD, BE, C A , CB, CC, C D , CE, D A ,

DB, DC, D D , DE, E A , EB, EC, ED, EE, and for each

of these a rule is required. Ten types of paragraph
will give 100 possibilities. A large part of this article

is devoted the problem of how one might specify

and implement such a large collection of rules.

When TEX is typesetting the document, it needs

to record the type of the last item on the galley,
which we shall call the state of the galley. Each

time an item is present for addition to the galley,

we have an evenr, which may then change the state

of the galley. Also, each event will cause a possibly

empty action to take place. The action chosen will
depend on the current state and on the event. In

t h s example it is the addition of vertical space. It
may be more compliciated. For example, a format

may allow a section to begin on the current page if
it is at most half full.

Finite State Automata

Here is a simpler example of a machme that has
states, events, and actions. It is a coin-operated

300 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

turnstile, such as is used by the New York subway

system. One approaches the turnstile, places a coin

in the slot, pushes against the bar, whch then gives

and allows admission. The next person d l have to

use another coin to gain admission. Without a coin,

the bar will not move.
Here is a more formal description of the opera-

tion of the turnstile.

\FSA \ t u r n s t i l e \ba r red

{
* \ba r red

@ \push \bar red

@ \ c o i n \open

* \open
@ \push \bar red \admi t-one
@ \ c o i n \open

3

The first line tells us that \ t u r n s t i 1 e is a Finite
State Automaton, whose initial state is \barred.

(This is something we forgot to specify). The line

@ \push \bar red

beneath \ba r red tells us that should the \push

occur event when the \ t u r n s t i l e is \ba r red then

the state is unchanged, and the action is empty. The

line

says that placing a coin in a \ba r red turnstile

changes its state to \open and again has no action.

The interesting line is

@ \push \bar red \admit-one

beneath * \open, which tells us that when the

turnstile is in the \open state (as a result of the
\ c o i n event), a \push will result in the \admit-one

action. In specifying the operation of the turnstile,

we forget to say what should happen when a coin

is placed in a turnstile that is already open. In the
above description, nothing happens.

The operation of the \ t u r n s t i l e has been
described by the transition lines. These begin with

an e, and are followed by an event, and then the new

state, and then, optionally, the action for the event.

To find the transition line for a given existing state

X and event Y, first look for * followed by X in the
description. This is the label for the state X. Now

read on until you reach e followed by Y. T h s is the

transition line to be followed.

The most general FSA with n states and m
events will require n x m transition lines. (The

acronym FSA stands for Finite State Automaton or
Automata as is appropriate). In real applications

t h s number can be reduced, by careful use of two
further properties of the \FSA construction. The

first is that the one or more labels for other events

can intervene between the label for the current
state, and the line for the message. In our case,

the \ t u r n s t i l e will be \open after the \ c o i n event,

whatever the current state. Here is a description of

\ t u r n s t i 1 e with only 3 transition lines.

\FSA \ t u r n s t i l e \barred

* \open
@ \push \barred \admi L o n e
63 \ c o i n \open

3

The second property is a little more complic-

ated. Within the rules for \ t u r n s t i 1 e, # 1 can be
used to stand for the current state, and #2 for the

event. The FSA \echo described here

\FSA \echo \ d e f a u l t

I
* # 1

@ #2 # 1 \message

{
s t a t e = \ s t r i n g # l ,
even t= \s t r ing#2

3
1

starts in the \ d e f a u l t state. Whatever the event, the
state is unchanged. The action is to \message the

current state, and the event that occurred.

Here is a more sophisticated version of \echo.

It is to have two states, \on and \ o f f . The event

\on is to turn change state to \on, the event \ o f f to

change state to \ o f f . All other events are to leave

the state unchanged, and if the state is \on there
should be a state and event \message as before.

i.\FSA \echo \on

2 . i
3. +: \ o f f

4. @ \on \on
5. e #2 \ o f f
6.

7 . * \on

8. @ \ o f f \ o f f
9, @ #2 \on \message

10. i
11. s t a t e = \ s t r i n g # l ,
12. even t= \s t r ing#2
13. 3
14.)

h e s 3-5 can be read as follows. If the state is \off

and the event is \on then the state is changed to

on, otherwise do nothng. Lmes 7-10 say that if the

state is \on and event is \ o f f , then state is changed

to \ o f f , otherwise the state is \on and the \message

is executed.
The order in which the labels and transition

lines appear is very important, and may require

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 301

Jonathan Fine

careful thought to get the best formulation of the

operation of the FSA. By way of an example, consider
coding t h s enhancement of the \ t u r n s t i 1 e. It is

required that the person should pass through the
turnstile before some fixed period of time has

elapsed since the \ co in event. This could be

requested if the turnstile is in fact a security door,

and the \ co in is the entry of an admission code.

This is an exercise, whose answer appears
towards the end of the article. Please assume that

there is a \set-t imer action, which will send the

\time-out event to the \ t u r n s t i l e at the end of the
fixed time period. Please also thnk as to how the
timer should behave if \set-t imer is called a second

time, before the \ti me-out has occurred.

A note on White Space

The macros above, and all other macros in t h s

article, are to be read and understood in a context

when all white space characters (these are space,
tab, end of line, and form feed) are ignored. To

allow access to space tokens, the category code of
- is changed to 10. Knuth has programmed TEX so

that such characters when read have their character

code changed to that of an ordinary space (The

THbook, page 47). In the code below, a - will

produce a space character.
As usual e will be a letter in macro files. In

addition, - will also be a letter. Math subscript, if

required, can be accessed via \sb, whch is provided
in p l a i n for those whose keyboards do not allow

access to -.
The code fragment

\catcode' \ =9 \catcode'\AAI=9
\catcode6\AAM=9 \catcode1\AAL=9
\catcode ' \ -= lo
\catcode '\@=ll \catcode' \ -= l l -

will establish this change of category codes.

Comparison with Erdsting Solutions

The problem of programming the vertical space

between elements is scarcely discussed in The

THbook.

LATEX has the very good idea of having all re-
quests for vertical space in the document processed

by special macros. This allows some resolution of
conflicting rules, such as mentioned in the introduc-

tion. According to 1 atex. tex, "Extra vertical space

is added by the command \addvspace{SKIP), which
adds a vertical skip of SKIP to the document." For

example, the sequence

\addvspace{Sl} \addvspace{SZ)

is equivalent to

\addvspace{maximum o f S 1 , SZ}

and so successive \addvspace commands will result

in only the largest space requested being added
to the page. The complicated question, as to

whether Zpc is larger or smaller than l p c p lus Zpc,

is resolved by an \ i f d i m comparison. The former is

larger.
There is also a command \addpenalty whch

functions in a similar manner. The \@s ta r t sec t i on

command, which is the generic sectioning command

for LATEX, uses these two commands to adjust
the penalty and vertical space before a section,

subsection, etc.
Another solution has been provided by Paul

Anagostopoulos's ZZTEX. One of the most diffi-
cult tasks in creating t h s format, he says (1992,

page 502) "was to ensure consistent vertical space
between elements." His solution was to define six
commands whch produce vertical space. As with

Q X , all requests for vertical space should pass

through these special commands.

To support these vertical spacing commands,

a stack of structures is maintained. Each level

of the stack records the type and amount of the

previous vertical space request, penalties requested,
and other data, or in other words, the state of the

galley. Because a floating figure, for example, will

add items to a galley other than the main vertical

list, the state of several galleys must be recorded.
Both F&X and ZZTEX adopt what may be called

an item-based approach. Before and after a text
item is added to the galley, vertical space and
penalties are added or adjusted. The galley is an

essentially passive object on whch items are placed,
and from whch they are removed. This approach

places restrictions on the use of the galley by the

text items, for whatever is done must be capable of

being undone.
In the FSA approach, responsibility is divided

between the commands whch form the text items,

and the FSA which controls vertical space on the

galley. Each text item, when it begins, passes a
message to the galley. The galley then does what

it will, depending particularly on the last item it
processed, as recorded in its state.

For example, here is a fragment from a galley

space automaton which has states \quote, \ tex t ,

and \section.

;': \quote
@ \ t e x t \ t e x t \vsk ip 3pt-
@ \ sec t ion \sec t ion \vskip lpc-

302 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

This code says that should a \quote be followed by
\ t e x t , then 3 points of space are required. Should a
\ s e c t i o n follow, then 1 pica is required. Similarly

* \ t i t l e
@ \quote \quote \nobreak \ v s k i p 3pt -

will inhlbit a page break between a \ t i t l e and a
\quote, and also provide some extra vertical space.

The author's experience is that it is natural to
express galley spacing rules in terms of an FSA.
The \FSA construction produces code that is simple
to understand, and it gathers all spacing activity
into one location. When errors of implementa-
tion or deficiencies of specification arise, it is not
hard to change the code to embody the improved
understanding.

Those who understand SMALLTALK will realize
that the galley is being modelled as an object which
responds to the messages sent to it by the text item
objects. The state of the galley is memory that is
private to the galley, and not accessed by the text
item objects except through the messages they pass
to the galley. It will also be possible for the galley
to send messages to or set flags for the text items,
for example to suppress indentation on a paragraph
whch immediately follows a section title.

Performance

It is important, when writing macros that will
appear frequently in the code of other programmers,
or whch will often be called as TEX typesets a
document, that these macros be written with an eye
to performance.

There are several aspects to performance. Per-
haps most important is the human side. Are the
macros easy to use, and do they produce code that
is easy to maintain? Do they produce programs that
are robust and simple to debug? Are there any traps
and pitfalls for the unwary? These are the human
questions.

Also a human question is speed of execution.
Do the macros act quickly enough? Important here
is to have a n idea as to how often the macros will
be called. T h s is not the same as how often the
macros appear in the source code. Because TEX does
not provide access to the current time (as opposed
to the time at the start of the job), this quantity will
be measured with a stopwatch.

The t h r d measure of performance is the quant-
ity of memory used for the storage and execution
of macros. This can be crucial. Often, an enlarged
version of TEX the program is required to process
a document whch uses both LATEX and Pg&X. The

capacity of TEX is described by 14 quantities, which
are listed on page 300 of The T~Xbook.

Most important is main memory, whlch is used
for storing boxes, glue, breakpoints, token lists,
macros etc. How much space does a macro require?
This question is asked and answered on page 383
of The Tflbook. Next most important is the hash
size, which limits the number of distinct control
sequence names.

TEX has a virtual memory system, by whch
it stores the less often used data on disc, if not
enough machne memory is available. Even though
TEX'S memory may not be exhausted, if the total
demands on the token memory exceed the actual
machne memory then the resulting use of virtual
memory will slow operations.

These three aspects of performance - ease of
use, speed of execution, and conservation of re-
sources - may pull in different directions. The best
single goal is probably simplicity. It can bring
benefit all round.

To indicate the benefits of the FSA approach,
here is the \ t u r n s t i 1 e recoded using \ i f . . . to
control selection of code to be executed. The state
will be stored as a number by \ t u r n s t i 1 e@. Zero and
one will represent \barred and \open respectively.
The parameter # 1 will be zero or one for \push and
\open respectively. Here is one version of the code
for \ t u r n s t i 1 e.

\ d e f \ t u r n s t i l e #1

{
\i f case # 1 -

\ i f num \ t u r n s t i l e @ = 1-
\ g l o b a l \ charde f \ t u r n s t i l e e O-
\admi t-one

\f i
\ e l s e

\ g l o b a l \ charde f \ t u r n s t i l e e 1-
\f i

3

When used, it will generate an error, because we
have yet to initialise the private macro \ t u r n s t i l e e .

The reader may complain that although the FSA

version is easier than the one just given, the use

of the four new control sequences \open, \push,

\ba r red and \ c o i n is a cost not worth bearing.
There is some merit in ths . However, \open etc. are
being used only as labels or delimiters, not macros.
Their meaning is irrelevant, if indeed they have a
meaning. Thus, existing control words could be
used in their place, or the same labels shared by
several FSA.

To achieve the ultimate parsimony in use of
the hash table, characters can be used as delimiters.
There are many character tokens available, such as

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 303

Jonathan Fine

x with category code 8 (subscript), which do not
appear in the normal use of TEX. They can be used
as delimiters. There are problems in th s . The
programmer would llke to write \on, and have some
other piece of software to consistently translate it
into an unusual character token. In other areas of
computing, such a program is called a preprocessor
or compiler. Also required is a means of loading
macros containing such unusual characters into the
memory of TEX.

There is much to gain by writing TEX macros in
such a manner, and the author is developing such
tools. When available t h s problem of consumption
of the hash table will disappear.

The next concern is main memory. According
to the definition of the \FSA constructor whch
appears later, the second definition of \ t u r n s t i 1 e

will produce macros equivalent to

\def \ t u r n s t i l e
{ \FSA@ \ t u r n s t i l e \ t u r n s t i l e @ \ o f f 3

and

\def \ t u r n s t i l e @ #1 #2

C
* \barred

@ \push \barred

?: \open
@ \push \barred \admit-one
@ \ co in \open

3

which, according to the The THbook, page 383,
will occupy 6 and 18 tokens of main memory
respectively. The overhead of \FSA@ we will ignore,
assuming that is shared between many FSA. By
contrast, the \ i f . . . version as coded occupies
25. This could be reduced to 19 by replacing
explicit numbers with the constants \z@ and \@ne.

The \FSA approach seems to be superior when the
specifications are more complex.

Some Other Approaches

To investigate speed of execution, an ideal problem
will be coded in several ways, and then timed. The
problem is that of an n-state n-event FSA, with no
actions. The control sequence \ s t a te is to hold
a number between 0 and n - 1. The goal is a
macro which takes a single parameter, which we
shall assume is a single digit, and on the basis of
this digit and the existing value of \ s t a te assign a
new value to \s tate.

Here is the solution the author believes will be
the quickest.

\def \qu ickes t #1

C
\ s t a t e \csname

\number \ s ta te #1
\endcsname

3

where lines such as
\expandafter
\chardef \csname 00 \endcsname 3

define control sequences \00, \01, . . . whch contain
the transition data. Clearly, n2 distinct control se-
quences wdl be required to hold this table. Actions
can also be supplied. With the d e h t i o n

event 2 applied to state 1 will change the state to 3
and call \myacti on.

Although quick, t h s approach does take a
large bite out of the hash table, and so is probably
not appropriate for coding the change of state as
items are added to the galley. During a normal
document this code will be executed perhaps 12
times each page, whereas font changes and accents
will be called more often. T h s approach has been
presented as to show how quickly TEX can do the
calculation, if resources are no limitation.

There is another context in which TEX keeps
a record of the state, and adjusts the action in
terms of what follows. As it typesets a word, one
letter after another, it consults the information that
is stored in the . t f m file, to produce kerns and
ligatures. TEX has been carefully programmed to
store this information compactly, and to access it at
h g h speed whle processing the characters. T h s is
the famous ligature and kerning, which has become
yet more powerful with version 3 of TEX.

Suppose that in a font one wants 2 units of
extra space between the characters whenever a 0 is
followed by a 4. The property list . p l file below
contains the script for the character 0. Line 7 says
that when a 0 is followed by a 4, a kern of 2 design
units should be inserted. T h s process is similar to
the operation of the \FSA construction. It is clear
that the transition table of an actionless automaton
can be stored in the ligature table of such a font.
More details of ligatures and kerning may be found
in The METRFONTbook, and Knuth (1989, 1990).

1. (LIGTABLE
2 (LABEL C 0)
3. (KRN C 0 R 1)

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

4 (KRN C 1 R 3)
5. (KRN C 2 R 1)
6. (KRN C 3 R 4)
7. (KRN C 4 R 2)
8. (STOP)

9. 1

A font needs characters as well as ligatures

and kerns. Normally, the characters of a font

are defined, and then the kerns and ligatures are

somethmg of an afterthought. For fonts that encode

FSA, the characters are the afterthought. The lines

(CHARACTER C 0)
(CHARACTER C 1)
(CHARACTER C 2)
(CHARACTER C 3)
(CHARACTER C 4)

will supply 0, 1, 2, 3 and 4 as characters for this
font, all with zero height, depth, and width. Now

encode the remaining transitions into the ligature

table, and call the font fsa5. This font encodes a 5

by 5 FSA.
The problem now is to access this data from

w i t h TEX. We shall assume that the design size
and design unit of the font are both lpt. This makes

the examples easier. First load the font f sa5

\ f o n t \ f s a f sa5-a t - l sp

at one scaled point. The width of the box

\hbox { \ f s a 04 1

in scaled points will be transition table entry for

state 0 and event 4. As before # 1 will be a digit. The

\ s t a t e will be a \chardef. The macro

\de f \ q u i c k e r # 1

{
\ se tbox \ze ro \hbox

{ \ f s a \number \ s t a t e # 1 }
\ c h a r d e f \ s t a t e \wd \zero

1

uses the transition table to determine the new
\ s t a t e .

Finally, here is a variant of the \FSA construc-
tion, specially adapted to t h s ideal problem. The

transition data is stored in the table \slow@, where
the x's indicate where the values should be placed.

\de f \s low@

C
"0 eox e1x e2x e3x e4x
*1 e o x e1x e2x e3x e4x
"2 e o x e1x e2x e3x e4x
*3 eox e1x e2x e3x e4x
"4 e o x e1x e2x e3x e4x

1

The FSA itself will use the numerical value of

\ s t a t e as a delimiter. This is the reason for the

\expanda f te rs.

Finally, for those who are not in a hurry, here

is the same FSA coded using the \FSA constructor

\FSA \s lowes t 0

C
*O eox e1x e2x e3x e4x
"1 eox e1x e2x e3x e4x
"2 eox e1x e2x e3x e4x
?(3 eox e1x e2x e3x e4x
*4 eox e1x e2x e3x e4x

1

where as before the x's indicate where the transition

table should be entered.

Speed of Execution

The macros \qu ickes t , \qu icker , \slow, and \s low-

e s t will now be timed.
Even the slowest macro executes in a fraction

of a second. The stopwatch will be applied not

to one application of a macro, but hundreds or

thousands. Rather than use a \ loop, whch will

Introduce considerable overheads of its own into

the elapsed time, the lines

\ l e t \O \ r e l a x

i d e f \1 {\0\0\0\0\0\0\0\0\0\01
\edef \2 ~\l\l\l\l\l\l\l\l\l\ll
\edef \3 {\2\2\2\2\2\2\2\2\2\21
\def \4 {\3\3\3\3\3\3\3\3\3\31
\def \ 5 {\4\4\4\4\4\4\4\4\4\41

will be read, resulting in macros \n whlch expand
\O exactly 10" times, for n = 0,1 ,2 ,3 ,4 and 5.
Timing tests can now be done by setting \O to an

appropriate value, typing \3, \4 or even \5 at the

console, and starting the stopwatch.
Here is a table of results for an old MS-DOS

personal computer, with a 286 processor running at

1OMhz.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Jonathan Fine

The first column provides a meaning for the
control sequence \O which is repeatedly called by
\1, \2, etc. Column B is the number of iterations
performed, and column C the time in seconds taken
for t h s number of iterations. The raw time taken for
each iteration, the quotient of C by B, is in column
D. Finally, column E is D adjusted to account for the
overheads involved in the timing tests.

The first three lines of this table are there to
help establish a baseline. It may be surprising that
the empty macro executes at about one third of the
speed of the \ r e l a x command. A certain amount of
time will be spent in expanding \O, \1, \2, \3 and
\4. This time should be discounted from the raw
figures, to obtain the time actually executing the
macro being timed. To produce round numbers, the
base line correction has been taken as -200. This
is close enough, given the accuracy on the raw data,
and the purpose of the table.

According to The METAFONTbook (page 317)
TEX will stop reading a ligature table once it has
found a "hit", and thus the entries appearing earlier
in the script for a given label will be found quicker
than those that are later. For the font f sa5 as used
in the test, the new state is the same digit as the
event, but it is coded as a 5 by 5 table, with smaller
digits first. Thus, \qu icker 0 will execute just a
bit quicker than \qu icker 4. The timing tests show
that the difference in time, while significant, is small
in relation to the whole.

It may again be surprising that \s low and
\ s lowes t are relatively so close to each other (al-
though twice the difference is approximately the
time taken by \qu icker) . If performance is an issue,
it seems to be better to move to the \qu icker or
\ q u i c k e s t style rather than produce a custom FSA

whch works through macro expansion alone.
The previous tests relate to a 5 by 5 transition

table. It should be clear that for a 10 by 10 table, the

\ q u i c k e s t approach will be just as rapid as before.
The \s low macro rewritten for 10 by 10 is \ b i g s l ow

which runs at well under half the speed. This is
because there is a quadratic element in the running
time. (Encoding the data requires a replacement
text with over 300 = 3 x 10 x 10 tokens, each of
whch must be read as the helper macro searches
for its delimiters.) The \ b i g q u i c k e r macro uses
the font f s a l 0 , which encodes the general 10 by 10
transition table. The decrease in performance is
slight, compared to the 5 by 5 \qu icker macro.
Why is t h s? When TEX consults a ligature table,
it needs to find the location of the label for the
first of the two characters. It can find t h s data
immediately, because this location is stored as part
of the information for the character. There is no
quadratic element in the running time.

It should be noted that adding actions to the
body of a \FSA will further increase the execution
time, even if they are not selected, because they
too constitute tokens whlch the helper macro has
to read.

The last two lines of the table give the times for
utility macros \ e x t r a c t and \ q u i c k e x t r a c t , whch
will be described later.

The \FSA approach is probably the easiest
to write code for. The \csname . . . \endcsname

approach runs very quickly, but will consume the
hash size. The font ligature table approach gives
code that runs quite quickly, without wasting the
hash size. However, it will not be so easy to write
code for t h s approach, not least because symbolic
names will not be available. Property list files are
not a preferred programming language. There will
be more on this later.

Finally, when it comes to size, the font approach
is a clear winner. The font fsa5, whch encodes the
general 5 by 5 transition table, occupies 47 words of
font information, while the replacement text for the
\FSA approach and also the slightly quicker variant
\s low both consist of 85 tokens. The font f s a l O

encoding the general 10 by 10 table occupies 132
words of font information.

The next section will show how the action
as well as the new state can be recorded by and
recovered from the kern.

Exploring Fonts

Here are some of the important facts, concerning
TEX'S capacity for handling fonts. A font can
contain up to 256 characters. The maximum
number of fonts that may be loaded depends on
the implementation, and is commonly 12 7 or 2 5 5 .

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

The total amount of font information that can be
stored might be 65,000 pieces. Each ligature or
kern occupies one such piece. Before TEX 3 and
METAFONT 2.7, there was an effective limit of 256
on the number of ligatures or kerns in a single font,
but now more than 32,000 are possible. In addition,
TEX 3 has smarter ligatures, whch in particular
allow the ligature tables for several characters to
share common code.

A kern can be positive or negative, and must
be smaller in magnitude than 2048pt. It can be
specified with a precision of 1sp (scaled point), of
whch there are 65536 = 216 in a single point. Thus
there are 268435455 = 228 - 1 possible different
values for a kern. Previously, the transition table
of a FSA has been encoded by setting the kern for a
character pair to be the new state, as a digit. Instead,
the ASCII code for the new state could be stored in
the kern, along with a lot more information.

In addition, each character has a height, a
depth, a width, and an italic correction. Although
each character in a font can have its own width, there
can be at most only 15 different nonzero heights,
nonzero depths, and nonzero italic corrections in a
single font. Each font has at least seven dimensions,
accessed in TEX through the \ f o n t d i men primitive. A
font can have many more such dimensions; at least
32,000 are possible.

The reader may wonder how to use the wealth
of digital information in a font. Here is one method.
It assumes that the kern is to have positive width,
and to be a nine-digit number when writen in units
of sp. T h s kern gives the width to \box\zero.

\wd\zero 123456789 sp % sample value
\def \ e x t r a c t
I

Here is another. The control sequence \count@

is a count register dedicated to scratch purposes.
Note the one rmllion is too large to be stored as a
\mathchar.

\newcount \ m i l l i o n
\ m i 11 i on 1000000

\def \ qu i ckex t rac t

C

Speed of execution for these macros is respect-
able, and indicates that even when the extraction
time is figured in, the font approach will run quicker
than the \FSA approach, except perhaps for the very
smallest examples. For the moment it is enough
to know that digital extraction is practical. What
will be best will depend on the demands of the
applications.

A more substantial problem is t h s . There may
be only 127 fonts available, or perhaps up to 255 if
a really large version of TEX is used. The fonts whch
encode FSA will never get into the final .dv i file
(unless the macros are not workmg properly) and
so d l not trouble the . dv i device driver. However,
to use 10 or 15 of the precious allocations of fonts
for the coding of FSA may be too much. Fortunately,
the same font can be used to store several FSA. In
fact, as long as no FSA has more than 255 distinct
events, the limit is on the total number of states,
across the various FSA being packed into the font.
It seems that in practice most FSA will have rather
more events than states.

Implicit in t h s discussion is the assumption
that TEX 3 is being used. Earlier versions of TEX
are limited to 25 5 kerns and ligatures for each font.
T h s may be enough for particular applications but
even those that do may grow beyond t h s limit over
the course of time. While compatibility with TEX 2 is
desirable, it should not be required.

Is It Practical?

Thls article began by defining the concept of a h t e
state automaton. The one implementation, via the
\FSA macro is easy to code, moderate in its use of
resources, and relatively slow to run. The other,
via font ligature and kerning tables, is quick to run,
impressively economical in resources, and difficult
to program without special tools.

The state of the galley, as we have defined
it, must be recalculated with every new paragraph,
heading, etc. Although not a rare event, it is not
so ubiquitious that the very best performance is
demanded.

Use of the font method will require special
tools that translates code, perhaps written with a
TEX like syntax, into a property list file from which
the . t f m file can be produced using the program
p l t o t f , together with some TEX code for handling
the special actions whch cannot be encoded in the
font information.

Such a tool would not be tremendously difficult
to write, but to ensure that it is available to all TEX
users on all platforms is another matter. The only

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 307

Jonathan Fine

programming language a TEX user can be sure to

have is TEX itself! (one can also hope that the user
has BBTEX and makei ndex available.) T h s seems to

force one to write the tool in TEX. But then it will
be interpreted, not compiled, and so perhaps slow
to run. There have been complaints about TEX as a

programming language, some perhaps well founded.
It is possible to write a compiler/preprocessor in

TEX itself, but it is not as it now stands a tool well

adapted to t h s task.

This line of thought, whch is relevant to

discussion of the future of TEX, will be investigated

further in a separate article.

Solution to Exercise

Here is the solution to the \ t u r n s t i l e problem with

timer. The following rules govern the behaviour.
Whenever \ c o i n occurs, the state becomes \open

and action is \set - t imer , irregardless of the existing

state. Any other event, including \ti me-out, should

result in the \barred state and no action, with one

exception. If the state is \open then a \push will still
\admi t-one and result in a \ba r red state.

\FSA \ t u r n s t i l e \barred

* \open
@ \push \barred \admit-one

\endverba t i m
%%

The \ se t - t imer macro requires a small amount
of numerical information. It must record the

number of clock ticks since the turnstile last became

\open. The \ t i m e r FSA will have two states, \ o f f and

\on. It will respond to events \on, \o f f , and \ t i c k .

The \ o f f event is for internal use only, to turn the
\ t i m e r off when time has run out. Also for internal

use is \ coun te r , which counts the \ t i c k events since

the \ t i m e r was turned \on. The \ se t - t imer macro
in \ t u r n s t i l e should send the \on message to the
\ t i m e r automaton.

\FSA \ t i m e r \ o f f

{
* \on

@ \ t i c k \on
\ i fnum \counter < 100-

\ g l o b a l \advance \coun te r 1-
\ e l s e

\ t i m e r \ o f f
\ t u r n s t i l e \ t ime-out

\f i

" \ o f f
@ \on \on \g loba l \ coun te r O-
e #2 \ o f f

1
\endverba t i m
%%

Finally, it should be noted that the timer will still

receive the \ t i c k event from the clock, whether it

is \on or \ o f f . The last two transition line say that
when \ o f f the timer responds only to the \on event.

Coding the \FSA Macros

The \FSA macro depends on some helper macros
\FSAe and \FSA@e whch are s i d a r to the \CASE

and \FIND macros which the author has defined
elsewhere (Fine, 1993).

The definition of \FSA is a little complicated.

The command

\FSA \mymacro \ i n i t i a l - s t a t e { . . . }

will first of all define the \mymacro to have expansion

\FSA@ \mymacro \FSA\mymacro
\ i n i t i a l - s t a t e

where \FSA\mymacro is a single control word. Next,
\FSA\mymacro is defined to be a two parameter macro

(t h s allows # 1 and #2 to appear in the transition

table of the FSA) whose expansion is indeed the
transition table.

These goals are accomplished by the following

definition.

\def\FSA # 1 % name o f FSA
#2 % i n i t i a l s t a t e
#3 % t r a n s i t i o n s

C
% d e f i n e t h e FSA
\edef # 1

C
\noexpand \FSA@
\noexpand # 1 % name o f FSA
\expandafter\noexpand
\csname FSA\s t r ing # 1 \endcsname
\noexpand #2 % i n i t i a l s t a t e

1

% def ine t h e t r a n s i t i o n s s t o r e
\expanda f te r \gde f
\csname FSA\s t r i ng # 1 \endcsname

I % < s t a t e >
##2 % <event>

{. #3 1
1

With these values, the result of expanding
\mymacro \event is

\FSA@ \mymacro \FSA\mymacro
\ s t a t e \event

and so a start can be made on the coding of the

helper macro \FSA@. It must expand the transitions

TUGboat, Volume 14 (19931, No. 3 -Proceedings of the 1993 Annual Meeting

Galleys, Space, and Automata

store \FSA\mymacro, passing \ s t a t e and \event as

parameters, and then look withn it for the current

state and the following transition line. The scratch

helper macro \nex t will search the expansion of
\FSA\mymacro. This macro can readily find the

\ s t a t e and the \event, and from t h s the new state.
To find the action is more difficult, because the

action portion is not delimited by a fixed token.

The next token after the action may be a @, or it

may be a *. Or it may be that the transition line

selected is at the very end of the transition store.
If not, then the rest of the transition store must be

discarded. To help take care of these possibilities,

helpful delimiters are placed after \FSA\mymacro.

Here is the code for \FSA@. Like \CASE and

\FIND, it is a selector macro.

\def\FSA@ # 1 % name
#2 % t r a n s i t i o n s s t o r e
#3 % < s t a t e >
#4 % <event>

{
\de f \nex t ##1 % d i s c a r d

* #3 % f i n d <s ta te>
##2 % d i s c a r d

@ #4 % f i n d <event>
##3 % new s t a t e
##4 % <ac t ion> + r u b b i s h

@ % nex t t r a n s i t i o n l i n e

I
% r e d e f i n e t h e FSA
\gde f #1 % name

{
\FSA@

1 % name
#2 % t r a n s i t i o n s s t o r e

##3 % new s t a t e

1

% prepare t o e x t r a c t t h e a c t i o n
\FSA@@ ##4 * % may need t h i s *

J

\expanda f te r
\ n e x t #2 % t r a n s i t i o n s s t o r e

#3 % < s t a t e >
#4 % <event>

@ % may need a t r a i l i n g @
\FSA@ % f i n a l d e l i m i t e r

1

Careful thought is required to follow the ex-

ecution of \FSA@. First \nex t is defined, with the

existing state and the event as delirniters. This

allows \ n e x t to extract information from the trans-
ition store. In fact, \nex t must find the current

state, and then the event w l c h occured, and then
extract the action, and then dward the rest of the

transition store, and then execute the action.

The transition store should be expanded, with

the state and event as parameters, before \nex t

is called. The part of the transition store which

lies before the new event and action should be

discarded, as should the part which lies after the
event and action. The delimiters supplied to the
definition of \nex t will discard the before portion.

The new state is found immediately after the old
state, in the expansion of \next , but the action is

not so easy. It may be delimited by .'- or by @,

depending on whether what follows is another line

for the same state, or the script for another state. If

the action is the last line of the transition store, the

action will not have a delimiter at all. This range of

possibilities is a consequence of the flexible syntax

allowed in the \FSA command. The trailing tokens @

\FSA@ at the end of the expansion of \FSA@ are there

to allow the action to be extracted, and the rest of
the transition store to be discarded.

The execution of \nex t will result in \mymacro

being defined. The new value will be the same as

the old, except that \ s t a t e wdl have been replaced

by the new state. Now to extract the action, which
lies in the tokens formed by the expansion of the

transition store, which were not absorbed by \next.

Suppose that the action had been delimited by an *
rather than an @ in the transition store, or even by

nothlng at all. In either of these cases, the action -

whch is picked up and copied by \nex t - will now
be delimited by a *. So, all that remains is to pick

up the action, throw away the rubbish, and perform
the action. This is done by a final helper macro.

\def\FSA@@ #1 % < a c t i o n >
* % d e l i m i t e r

#2 % <d iscard>
\FSA@ % d e l i m i t e r

{ 1 } % a t l a s t , t h e a c t i o n

The very last token(s) in the expansion of

\mymacro come out to be the action for the curent

state and event, as determined by the transitions
store. The action is not called until the FSA has
finished its activities. Thus, the action can take para-
meters, if need be. T l s may be helpful. In SMALL-

TALK, messages are allowed to have parameters.

Bibliography

Anagnostopoulos, Paul. "ZZTEX: A macro package for

books", TUGboar, 13 (4), pages 497 - 505, 1992.

Fine, Jonathan. "The \CASE and \ F I N D macros",

TUGboat, 14 (l), pages 35 - 39, 1993.

Knuth, Donald E. "The new versions of TEX and

METRFONT", TUGboat, 10 (3), pages 325 - 328,

1989.
Knuth, Donald E. "Virtual Fonts: More Fun for Grand

Wizards", TUGboat, 11 (I), pages 13 - 23, 1990.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Syntactic Sugar

Kees van der Laan
Hunzeweg 57, 9893PB, Garnwerd, The Netherlands, 05941-1525

Internet: cgleri s c l . rug. nl

Abstract

A plea is made for being honest with TEX and not imposing alien structures upon
it, other than via compatible extensions, or via (non-TEX) user interfaces to suit the
publisher, the author, or the typist. This will facilitate the process of producing
(complex) publications effectively, and typographcally of hgh-quality.

Introduction

TEX is a formatter and also a programming language.
TEX is unlike traditional hgh-level programming lan-
guages. It is still powerful, in a class of its own,
unusual, and unfamiliar.

Because TEX is different, macro writers propose
harnessing it into a more farmliar system, by impos-
ing syntaxes borrowed from various successful high-
level programming languages. In doing so, injustice
to TEX'S nature might result, and users might be-
come intimidated, because of the difficult-at least
unusual-encoding used to acheve the aim. The
more so when functional equivalents are already
there, although perhaps hdden, and not tagged by
familiar names. T h s is demonstrated with examples
about the loop, the switch, array addressing, op-
tional and keyword parameters, and mouth versus
stomach processing.

Furthermore, TEX encodings are sometimes pe-
culiar, different from the familiar algorithms, pos-
sibly because macro writers are captivated by the
mouth processing capabilities of TEX. Users who
don't care so much about TEX'S programming power
but who are attracted by the typesetting quality
whch can be obtained with TEX as formatter, can
be led astray when, while searchng for a particu-
lar functionality, they stumble upon unusual encod-
ings. They might conclude that TEX is too difficult,
too error-prone and more things like that and flee
towards Wordwhatever, or embrace Desk Top Pub-
lishing systems.

The way out is education, next to the provi-
sion of compatible, well-documented and supported
user interfaces, whch don't act llke syntactic sugar,
by neglecting or hding the already avdable func-
tional equivalents. Neither the publication of encod-
ings nor the provision of encodings via file servers
or archves - although a nice supporting feature for
the T~Xies -is enough. The quality, compatibility

and the simplicity of the (generic) macros should be
warranted too.

It is not the aim of this paper to revitalize a pro-
gramming languages notation war, but to stimulate
awareness and exchange ideas.

First, 1'11 glance at the big collections, and after
that I'll dive into the details of macros from various
sources.

In the Large

Let me first look roughly at the big collections, and
refer for more details to papers on the issue.

In my opinion the math mark-up in Spivak's
AM-TEX is syntactic sugar. It claims to be essen-
tially simpler than plain's math mark-up, which it
is not. It is just different and does not provide
more facilities than plain. A proof? All the ex-
amples provided in "The Joy of TEX" can be format-
ted equally withn plain. In L%S-TEX the table part
and the commutative diagrams are substantial ex-
tensions of plain, next to the general symbolic refer-
ence scheme. For more details see my book review
of Spivak's CEuvre.

I consider amsppt . s t y and the llke an adapta-
tion by a publisher of manrnac for production, with
value added, if not for the user's guides and the
provided support. These latter things can't be over-
estimated for Ben Lee User1 in my opinion. For more
detail see my AMS BLUes.

Furthermore, I consider l Q X as syntactic sugar,
especially the math part. LATEX 2.x is even more dan-
gerous because it claims to be perfect, which it is
not. If I compare the mark-up in the spirit of The
T~Xbook with my mark-up obtained via LATEX, then
the latter is much more verbose and has not added
much. The extras llke the picture environment, sym-
bolic and cross-referencing, and the bibliography

' From The THbook fame, I like the nickname
BLU.

TUGboat, Volume 14 (1 993), No. 3 -Proceedings of the 1993 Annual Meeting

Syntactic Sugar

environment, can be added easily by independent
tools in a manrnac-llke basis, when neededm2 Multi-
column issues have in general their difficulties -
more llkely buses-and-weirdness effects will occur;
see Richard Southall's contribution about theseis-
sues at this conference - but if one is willing to ad-
apt proofs by hand now and then, it can be added
because the functionality is available as a separate
tool, nowadays.

If only manmac and Knuth's other example
formats had been appropriately documented
in (additional) user's guides, then the (LA)TEX
world would have looked much different
from what it is today.

In the Small

In the sequel I'll descend into detail and discuss:
loops, switches, array addressing, optional and
keyword parameters, mouth processing, sorting and
lexicographc comparison.

Loops. Knuth's loop, (The THbook, p. 219), imple-
ments the general flow

pretst

posttst

with (pseudo) syntax

\l oop(p re ts t) \ i f . . . (posttst) \ repeat.

Special cases result when either (prets t) or
(posttst) is empty. The former is equivalent to, for
example, PASCAL'S while . . .do . . . , and the latter to
repeat.. .until. With t h s awareness, I consider the
variants as proposed by, for example, Pittman (1988)
and Spivak (1991) as syntactic sugar.

If \i f case . . . is used, then we have for
(posttst) several parallel paths, of whch one - de-
termined dynamically - will be traversed. Provide
and choose your path! What do you mean by tra-
versing the \ e l se-path?

With respect to the mark-up of the list of ref-
erences it is such a waste that every author should
supply the full mark-up. Why not just supply ref-
erences to the database of pre-formatted entries, in
possession of and maintained by the editors?

Why another loop? Kabelschacht (1987) and Spivak
(1989, 1991) favour a loop whch allows the use of
\ e l ~ e . ~ I have some objections to Kabelschacht's
claim that h s loop is a generalization of plain's loop.

First, it is not a generalization, just a clever,
but variant, implementation of the loop flow chart.
Second, it is not compatible with plain's loop. His
exit path is via the \ then branch (or via any of the
\or-s, when \i f case is used), and not via the \ e l se

branch.
The reason I can thnk of for introducing an-

other loop, while the most general form has been
implemented already, is the existence of commands
like \i f v o i d, and \i f eo f , and the absence of their
negatives \i fnonvoi d and \i fnoneof, respectively.
In those cases we like to continue the loop via
the \e l se branch. For the latter case this means
to continue the loop when the file is not ended.
This can be attained via modifying the loop, of
course, but I consider it simpler to use a \new i f

parameter, better known as 'boolean' or 'logical' in
other programming languages. With the \newi f

~ a r a m e t e r , ~ \ i f n e o f , the loop test for an end of
file-functionally l\i feof-can be obtained via

\i f e o f \ n e o f f a l se\ei se \neo f t r ue \ f i \i f n e o f

For an example of use, see the Sort It Out subsection.
Related to the above encoding of the logical 1, are
the encodings of the logical and, A, and or, v, via

'Recently, I encountered an application that
required a set of nested loops and local-
only assignments and definitions. TEX'S
\ loop. . . \ repeat construction proved to be
inadequate because of the requirement that
the inner loop be grouped.'

Functional code

-\ i f . . .

\ i f . . . ~ \ i f . . .

\ i f . . . v \ i f . . .

Their loops are equivalent to the general form
of the loop with the execution of an extra part after
the loop.

Be aware that the implementation of \newi f

does not allow for \g lobal .

TEX encoding
\ i f . . . \not fa1 se\el se

\ n o t t r u e \ f i \ i f n o t

\andt rue\ i f . . .\ i f . . .
\ e l se\andfal se

\el se \and fa l se \ f i \f i

\i fand

\ o r t r u e

\if.. . \ e l s e \ i f . . . \ e l se

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

I \ o r f a l s e \ f i \ f i \ i f o r

with the \newi f -s : \i f n o t , \i fand, and \i f o r .

Nesting of loops. Pittman (1988) argued that there
is a need for other loop encodings.

Kees van der Laan

If we take his (multiplication) table-I like to classify

these as deterministic tables, because the data as

such are not typed in-to be representative, then be-

low a variant encoding is given, which does not need
Pittman's double looping. The table is typograph-
ically a trifle, but it is all about how the determin-

istic data are encoded. My approach is to consider it

primanly as a table, which it is after all. Withn the

table the rows and columns are generated, via recur-

sion, and not via the \loop. Furthermore, I prefer
to treat rules, a frame, a header and row stubs as

separate items to be added to the table proper, (van
der Laan, 1992~) . The creation of local quantities is

a general TEX aspect. I too like the idea of a hidden
counter, and the next best TEX solution via the local

counter. The local versus global creation of coun-
ters is a matter of taste, although very convenient

now and then. The creation of local quantities is

tacitly discouraged by Knuth's implementation, be-
cause there is no explicit garbage collector imple-

mented and therefore no memory savings can be
gained. The only thing that remains is protection
against programming mistakes, which is indeed im-

portant.

Pittman's table, focused at the essential issue of

generating the elements, can be obtained via

$$\vbox{\halign{&\ \ h f i l # \ h f i l \ s t r u t \ c r

\rowsll$$
% with

\newcount\rcnt\newcount\ccnt\newcount\tnum

\newcount\mrow\newcount\mcol \mrow2 \mcol3

\def\rows{\gl obal \advance\rcntl

\global \ccntO \col s
\ i fnum\rcnt=\mrow\swor\fi

\rs\rows}

\ d e f \ s w o r # l \ r o w s { \ f i \ c r c r }

\def\col s{\gl obal \advance\ccntl

\tnum\rcnt \mu1 t i pl y\tnum\ccnt
\the\tnum

\ i fnum\ccnt=\mcol\sl oc \ f i

\cs\col s}
\def\s l oc#l\col s{\fi }

\def\rs{\cr}\def\cs{&}

The result is

2 4 6
The termination of the recursion is unusual. It is
similar to the mechanism used on p. 379 of The

Tflbook, in the macro \deleterightmost. The lat-

ter T~Xnique is elaborated in Fine (1992) and van der
Laan (1992d).

The above shows how to generate in TEX determ-
inistic tables, where the table entries in other pro-

gramming languages are generally generated via nes-

ted loops. One can apply t h s to other deterministic

math tables - trigonometric tables for example -

but then we need more advanced arithmetic facil-

ities in TEX (or inputting the data calculated by other
tools), not to mention the appropriate mapping of

tables which extend the page boundaries.

For a more complete encoding see my Table Di-

versions (van der Laan, 1992~) . The idea is that rules

and a frame be commanded via \rul ed, respectively

\framed. The header via an appropriate definition

of \header, x, the indication that we deal with a
multiplication table, in \ f i r s t , and the row stubs

via definition of the row stub list. All independent

and separate from the table proper part.

A better example of a nested loop is, for ex-
ample, the encoding of bubble sort as given in van

der Laan (1993a).

Loops and novices. Novice TEXles find Knuth's loop
unusual, so they sugar it into the more familiar
while, repeat, or for constructs, encouraged to do so

by exercises as part of courseware. From the func-

tionality viewpoint, there is no need for another loop
notation.

With respect to the for loop, I personally like the

idea of a hdden counter, see van der Laan (1992a) or

Pittman (1988). The hdden counter has beenused in

an additional way to plain's loop in, for example, van
der Laan (1992a1, (via \preloop and \postloop),

and will not be repeated here. This method is a
matter of taste, whch does not harm, nor hinder,
because it is a compatible extension.

And for the nesting of loops we need scope

braces, because of the parameter separator \repeat.

If braces are omitted, the first \ repeat is mistaken

for the outer one, with the result that the text of

the outer loop will not become the first \body. The
good way is, to make the inner \ repeat invisible at

the first loop level, by enclosing the inner loop in
braces.

With non-explicit nesting - for example, the in-

ner loop is the replacement text of a macro - we still

need scope braces, because otherwise the \body of

the outer loop will be silently redefined by the body

of the inner loop.

The point I would like to get across is that there
is no real need for another loop encoding. Syntactic

sugar? Yes!

Switches, is there a need? Apart from the

\ i fcase . . . construct, TEX seems to lack a multiple

branching facility with symbolic names. Fine (1992)
introduced therefore

\def\f rui t#l{\swi tch \ i f # l \ i s

a \apple

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Syntactic Sugar

I have two, or rather three, remarks to the above.

First, the 'switch'-functionality is already there.

Second, Fine's implementation is based upon

'It is clear that \switch must go through the

alternatives one after another, reproducing

the test.. . '
Going through the alternatives one after another

is not necessary. Third, h s example, borrowed

from Schwarz (1987), can be solved more elegantly

without using a 'switch' or nested \ i f s at all, as

shown below.
The first two aspects are related. Fine's func-

tionality can be obtained via

\def\f rui t#l{\csname f rui t#l\endcsname}

% w i t h

\def\f rui ta{\appl e}

\def\fruitb{\banana} %et ce t e ra

With, for example, \def\appl e{{\bf appl el},

\ f r u i t a yields apple.

And what about the 'else' part? Thanks to

\csname, \ r e l ax will return when the control se-

quence has not yet been defined. So, if noth-
ing has to happen we are fine. In the other

situations one could define \def\frui t e l se{. . .},
and make the e l s e fruits refer to it, for example,

\def\frui ty{\frui te l se} ,
\def\f rui tz{\f rui t e l se}, etc. When the set is

really uncountable we are in trouble, but I don't

know of such situations. And, the five letters 'fruit'

are there only to enhance uniqueness of the names.
As example Fine gives the problem, treated by

Schwarz (1987), of printing vowels in bold face."

The problem can be split into two parts. First,

the general part of going character by character

through a string, and second, to decide whether the
character at hand is a vowel or not.

For the first part use, for example, \do1 i s t ,

(The TMbook, ex 11.5), or \ f i fo , (van der Laan,

1992d).

\def \ f i fo#l{\ i fx \of i f# l \o f i f \ f i

\processC#l}\fi fo}

\def\ofi f # l \ f i fo{\fi }

% w i t h t o be defined by the user

\def\process#l{. . .}
For the second part, combine the vowels into a
string, aeiou, and the problem is reduced to the

A somewhat misplaced example because the ac-
tions in the branches don't differ, except for the non-

vowel part.

question (cha r) E aei ou? Earlier, I used the latter
approach when searchmg for a card in a bridge hand

(van der Laan, 1990).~ That was well-hdden under
several piles of cards, I presume? Recently, I have

used the same method for recognizing accents and

control sequences in a word, (van der Laan, 1993a).

Anyway, searchmg for a letter in a string can be

based upon \ a t e s t , (The T~Xbook, p. 3751, or one
might benefit from \ismember, on p. 379. I com-

posed the following

\def\l oc#l#Z{%l ocate #1 i n #2

\def\locate##l#l##2\end{\ifx\empty##2%

\empty\foundfal se\el se\foundt rue\fi}

\l ocate#2. #l\end} \newif\i ffound

Then \ f i f o Audaci ous\ofi f
yields Audacious, with

\def\process#l{\uppercase{\loc#l}%
{AEIOU}\iffound{\bf#l}\else#l\fi}

Note that en passant we also accounted for upper-
case vowels. By the way, did you figure out why a
period - a free symbol - was inserted between the

arguments for \ locate? It is not needed in tlvs

e ~ a m p l e . ~ Due to the period one can test for sub-

strings: s t r i ng l E str ing?? Because, {str ingl E

s t r ing2} A {str ing2 E s t r ingl] 3 {str ingl =

s t r ing2}, it is also possibile to test for equality of

strings, via \l oc. Happily, there exists the following
straightforward, and TEX-specific, way of testing for

equality of strings

\def\eq#1#2{\def\st{#l}\def\nd{#2}

\i fx\st\nd\eqtrue\el se\eqfal s e \ f i }

For lexicographic comparison, see van der Laan

(1992d, 1993a) or Raichle (1992).
Knuth's switches. Knuth needed switches in h s

manrnac macros-\syntaxswitch, \xrefswitch
and the likeP(The T~Xbook, p. 424). He has im-

plemented the functionality via nested \ i fs. My ap-

proach can be used there too, but with some care
with respect to the {-token in \next (read: some

catcode adaptations). For example:

\ea\def\csname sw[\endcsname{[-branch}

\ea\def\csname swl\endcsname{bar-branche}

\def\next{[}\csname sw\next\endcsname, and

\def\next{l}\csname sw\next\endcsname

ylelds: [-branch, and bar-branche.
For manmac see The Tgbook, p. 412-425, and

the discussion in van der Laan (1993~).

The macro there was called \ s t r i p .
' If omitted the search for 'bb' in 'ab' goes wrong:

abbb vs. ab.bb, will be searched.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Kees van der Laan

Array addressing. Related to the switch, or the old
computed goto as it was called in FORTRAN, is ar-
ray addressing. In TEX t h s can be done via the use
of \csname. An array element, for example, ele-
ments identified among others in PASCAL by a[1]
or a [appl e l , can be denoted in TEX via the control
sequences

\csname al\endcsname
\csname aappl e\endcsname

For practical purposes this accessing, or should we
say 'reading', has to be augmented with macros for
writing, as given in Greene (1989) and Hendrickson
(1990). Writing to an array element can be done via

\def\a#l#2{\ea\def\csname a#l%
\endcsname{#2}}\a{l}{Contents}

Typesetting (reading) via \csname al\endcsname
yields Contents, after the above.

The point I would like to make is that 'array
addressing' -also called table look-up by some au-
thors -is already there, although unusual and a bit
hidden. However, we are used to things like strong
type-checlung, aren't we? Once we can do array ad-
dressing we can encode all kind of algorithms, whch
make use of the array data structure. What about
sorting? See the Sort It Out subsection, for a glimpse,
and the in-depth treatment in van der Laan (1993a),
with O(n log n) algorithms, and application to gloss-
ary and index sorting.

Keyword parameters. In TEX literature the func-
tionality of keyword parameters is heavily used.
Some authors impose the syntax known from com-
mand languages upon TEX: for examples see Appelt
(1987) or Siebenmann (1992). In my opinion this is
syntactic sugar, because of the following rhetorical
question. What is essentially the difference between

\ r e f
\key W\by A . Weil
\paper Sur . . .
. . .
\endref

as detailed in Siebenmann (1992) and, for example,

{\def\key{W}\def\by{A. Wei 1)
\def\paper{Sur . . . I . . .
\ t ypese t1

The typesetting is done in the cited case by
\ r e f . . . \endref , and in the alternative case by
\ typese t . The values for the keys are the back-
ground defaults and those temporarily redefined.
Note that in both cases the order of the specifica-
tions is free and that defaults (empty) are used, for
not explicitly specified values.

In my bordered table macro (van der Laan,
1992c), I could have introduced keyword parameters
obeying the command languages syntax. Happily, I

refrained from that. I needed several parameters.
A parameter for framing, with functionalities non-
framed, framed, and dotfrarned. A parameter for
ruling, with functionalities nonruled, ruled, hruled,
vruled, and dotruled. And a parameter for position-
ing of the elements, with functionalities centered,
flushed left, and flushed right. (The first element of
each enumerated list of values, acting as the default
value.)

Furthermore, I decided to provide the user
the possibility of optionally specifying a caption, a
header, a rowstub list, or a footer. If any of these is
not explicitly specified, then the item wdl be absent
in print too.8 This resembles optional parameter be-
haviour, but has been realized by Knuth's parameter
mechanism.

In following Knuth's approach, I succeeded in
keeping the encoding compact, and transparent. I

find it as simple, direct, and serving the purpose
extremely well.9

Optional parameters. Among others, in LATEX, (Lam-
port, 1986), the mechanism of optional parameters
is used. Optional parameters are a special case of
keyword parameters. Knuth used optionalfieyword
parameters abundantly, and called them just para-
meters, as opposed to arguments of macros. (Thnk
for example of his various parameters and his
\every. . . s.) So it is already there, although in an
unusual way.

Another example whch illustrates the arbit-
rariness of the syntax choice with respect to op-
tional/keyword parameters vs. Knuth's parameters
is TUGboat's \twocol vs. Q X ' s twocol umn style op-
tion.

Intriguing optional parameter conventions
are the general and the systematic encoding
of an/lS-T~X's \nof r i 11 s , and TUGboatsty's
\@checkopti ons.1°
Salomon's plain Makeindex. At NTG's '92 spring
meeting David Salomon reported about adapting
MakeIndex to work with plain. He used optional

Another difficulty was to provide a default tem-
plate, whch can be overridden by the user. T h s was
solved by the same approach.

Earlier, I had a similar experience (van der Laan,
1990).

l0 More about these issues in AMS BLUes (van der
Laan, 1993d) and TUGboat BLUes, (van der Laan,
1993e) respectively.

314 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Syntactic Sugar

parameters, with the function as given in the fol-
lowing table

Typeset
Source

document index

A [abc] abc abc

A [x ~ z l {abc} abc xyzabc
A 1 abc 1 abc abc

Al \abc l \abc \abc

A{\abc} replacement same
text of \abc

A [1 \abc 1 ! xyz] { } nothing \abc,
xyz

and combinations thereof.
The same functionality can be obtained via

Knuth's parameter mechanism. Only one parameter
is needed. Let us call this the token variable \p. The
idea is that the contents of \p have to be inserted
before the index-entry in the index, and not in the
text. Some symbols can be given a special meaning,
like Salomon did, for example with
subentry).

Salomon's Source Alternative

A [abc] A{abc}

" [xyz l Cabc3 ({ \ P { X Y Z I A

Al \abc l A (I \abc I 3
A{\abc} A{\abc}

A [l \abc l ! x y z l 0 {'\PI l \abc l

(to denote a

In the above I denotes manmac's verbatim delim-
iter. The macro for A has to be adapted accordingly.
It is beyond the scope of t h s paper to work that
out in detail.ll The point I like to make is that the
specification can be done equally well, if not sim-
pler, via Knuth's parameter mechanism. In manmac,

Knuth provides simple mark-up facilities for writing
index reminders to a file, except for comments and
see. . . , and see a1 so. . . parts. The latter can be
accounted for. I have touched upon these issues in
Manmac BLUes (van der Laan, 1993~) .

Mouth vs. stomach. When one starts with macro
writing in TEX one can't get around awareness of
TEX'S digestive processing. Mouth processing is un-
usual. For the moment, I consider it as a spe-
cial kmd of built-in pre-processing, an unusual but

l1 The preparation of an index via TEX has gotten a
new dimension since my encodings of sorting withm
TEX. Also the writing of general index reminders to a
file has been elaborated upon. For the first, see van
der Laan (1993a), and for the latter, see van der Laan
(1993~) .

powerful generalization of the elimination of 'dead
branches.'12

Now and then encoding is published in TUG-
boat, and other sources as well, which looks diffi-
cult, and which does not seem to reflect the familiar
algorithms. Sometimes, it has become difficult, be-
cause of the sought-after processing in the mouth,
see for example, Jeffrey (1990) and Maus (1991).13
The latter author agrees more or less with what is
stated above '. . . although the macros are hard to
read.. . '.

What puzzles me are the following questions.

Why don't authors provide the straightfor-
ward TEX encoding, not restricted to mouth
processing, as well?
Why don't they make clear the need for
mouth processing, or should I say mouth op-
timization?
If so, why don't they start with the straight-
forward encoding and explain the adaptation
steps?

Faced with the above questions myself, I would an-
swer that it is apparently too difficult to do so.14
Furthermore, I read and worked on the math parts,
the alignment parts, the macro chapter, a substan-
tial part of the dirty tricks Appendix D and of the
example formats Appendix E of The T~Xbook, and
until now found only a comment about the capabil-
ity of TEX'S mouth processing along with the macro
\de l e t e r i ghtmost. I know of the argument that
there is a need for it within an \edef, a \ w r i t e . . . ,
and the like. I have heard that, but from an applic-
ation point of view, my obvious answer is: Isn't it

Knuth might forgive me my ignorance at t h s
point. My brows are raised when I see published
code, restricted to mouth processing, which looks
so verbose and unintelligible. I definitely turn my
back on it when the straightforward alternative en-
coding is familiar, compact, elegant and generic, des-
pite the rumour that TEX'S mouth has the program-
ming power of the Turing machme. As it is, in my
opinion, that is somethng different from, let us say,
literate programming, to indicate a broad stream of
readable programs.

l3 By the way, when do we know that somethmg is
completely processed in the mouth? Is there a check
on it? Or, is it just an abstract part of the T~Xnigma?

l%d what about the efficiencies? From the view-
point of the machine and with respect to human
understanding? I have not seen the common and
mouth versions of an algorithm published simultan-
eously, let alone have them compared with respect
to timing.

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Kees van der Laan

possible to do the thmgs outside those constructs,

equally well, and pass through the results?

If authors don't help me out with the above,

I consider the encoding as I'art pour I'art.

Nothing wrong with that, on the contrary.

The only thmg against that is that it will

spread a negative image about TEX encoding,

certamly not under the theoretical computer

scientists, but under the day-to-day BLUe-
type programmers, if not the authors who

just use (LA)TEX to get their work out, beau-

tifully.

Agreed, Maus referred to The T~Xbook, but Jeffrey

could have provided a more intelligible solution, and

should have refrained from burying hls method un-

der a sort of program correctness math. At the mo-
ment, it is easier to start from scratch. I experienced
that already with the encoding of: the Tower of

Hanoi, typesetting crosswords, generating n-copies,
lexicographic comparison, and sorting. The pub-

lished encodings inspired me to develop alternat-

ives, sure, but that should not be the aim, should it?

Furthermore, I wonder how many users have been

discouraged by those 'difficult to read' codes, espe-
cially when the familiar codes are straightforward?

n-capies. I needed Maus' functionality - avant la

lettre-in typesetting a fill-in form, where a num-

ber of rows had to be repeated. Of course, my editor
can do it - statically - and that served the purpose.
It is easy for sure, but it does not look elegant. A

straightforward use of tail recursion satisfied me

better, because of the simplicity, the compactness
and the elegance, at the expense of a negligible effi-

ciency loss. See the example about the bridge form

in Table Diversions (van der Laan, 1 9 9 2 ~) . ~ ~ The tail

recursion determines the number of copies dynamic-
ally, as do the other solutions given by Knuth, for ex-

ample the nice solution via the use of \a f tergroup,

(The TNbook, p. 374).16
Sort it out. Jeffrey's problem is: given an unsorted

list of (positive) integers via symbolic names, type-

set the ordered 1ist.l; In order to concentrate on the

main issues, assume that h s list adheres to Knuth's

The complexity is of order O(n), instead of

O(1og n), whchis not important, because of the small

number of copies involved.
l6 Knuth in h s chart macro - for typesetting font

tables - uses also the straightforward approach of

supplying all the lines in \normal char t . He could

have used recursion sirmlar to the way I did it in the

multiplication table of Pittman.
I have also worked on t h s problem, taking care

of the range notation aspects (van der Laan, 1993b).

list structure (The THbook, p. 378). As example con-

sider the list l8

The sorted numbers 1, 27, 314, are obtained via

\ de f \ \ # l { \ i fnum#l<\mi n \ l et \mi n = # l \ f i)

\def\first#l{\def\lop\\##l##2\pol{%
\l et \mi n=##l} \ea\ l op#l \po l)

\newi f\i f noe

\l oop\ i fx \empty\ l s t \ noe fa l se\el se

\noet r u e \ f i
\ i f n o e \f i r s t \ l s t \ I s t \min,

{ \ de f \ \ ## l { \ i f x## l \m i n \e l se\noexpand\\%

\noexpand##l\fi}\xdef\lst(\lst}}%

\ repeat

The encoding implements the looping of the basic

steps

find minimum (via \I s t , and suitable definition

of the active list separator \\)

typeset minimum (via \ m i n)

delete minimum from the list (again via

an(other) appropriate definition of the active

list separator).

For removing a typesetted element, I was inspired

by \ remequival en t (The T~Xbook, p. 380).19
The above is effective for short lists, as was the

case in Jeffrey's a p p l i ~ a t i o n . ~ ~ For longer (and ran-

dom) lists, techmques of order O(n1ogn) are more

appropriate. For plain TEX encodings for the latter

see van der Laan (1993a). There it has been applied

to lexicographc sorting, too.
Lexicographic comparison. Eijkhout has provided

macros - focused at mouth processing -for lexico-

graphic ordering (1991). His \ i f a l l chars . . . \ a r e

. . . \be fo re made ample use of \expandafter, and
is not easily accessible for somebody with say two

years of TEX e x p e r i e n ~ e . ~ ~
Hackers might go into ecstasy, but application-

oriented users become discouraged. For a straight-

forward alternative, not restricted to mouth pro-

cessing, see van der Laan (1992d). The point I'd like

Is Equally-well, the comma could have been used

as an active list separator, which looks more natural.

I decided to adhere to Knuth's notation.
l9 I was not able to apply the parameter separator

techmque to locate the element to be removed.
20 Remember that sorting based on linear search

has complexity 0 (n2) .
21 Moreover it had a flaw, as pointed out by

Bernd Raichle (1992), who presented an alternative

with less \expandaf tem and an intriguing use of
\csname.

316 TUGboat, Volume 11 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Syntactic Sugar

to make is that I would have welcomed the familiar

solution and the transformation steps as well.

Conclusions

It is hoped that authors who can't resist the chal-

lenge to impose syntaxes from successful program-

ming languages upon TEX also encode the desired

functionality in TEX'S peculiar way, and contrast this

with their proposed improvements. The novice, the

layman and hls peers will benefit from it.

The difficulties caused by TEX'S unusual encod-
ing mechanisms can best be solved via education,

and not via imposing structures from other lan-

guages. The latter will entail confusion, because of
all those varieties. Furthermore, it is opposed to the

Reduced Instruction Set idea, which I like. For me
it is similar to the axioms-and-theorems structure in

math, with a minimal number of axioms, all mutually

orthogonal.

Publishing houses, user groups, and macro
writers are encouraged to develop and maintain user

interfacesz2 whch do justice to TEX'S nature, and

don't increase the complexity of TEX'S components.

Good examples are: TUGboat's sty files, AmS-LATEX,
AmS-TEX, and LW-TEX, and not to forget good old

manmac! Macro-TEX and the LATEX3 project are prom-
ising.

File servers and archives are welcomed, but the
compatibility, the simplicity and in general the qual-

ity, must be warranted too. Not to mention pleasant

documentation and up-to-date-ness.

My wishful thmkmg is to have intelligent
 archive^,'^ whch have in store what is locally gener-

ally needed, and know about what is available else-

where. The delivery should be transparent, and inde-

pendent of whether it comes from elsewhere or was

in store. For corrections and certifications I would
welcome a similar approach as ACM's loose-leaf col-

lection of algorithms

Any thrd-rank engineer can make a com-

plicated apparatus more complicated, but it

takes a touch of genius to find one's way back

to the basic principles, whch are normally

fairly simple.

E.F. Schumacher, Small is beautiful.

I'm happy to include the following synopsis of the

TUG ' 93 proceedings referee

'The point he is trying to make is that TEX

macros are software and the really difficult

22 And user's guides.
23 Essentially the trickle approach, see the Earn

Network Resource Guide (1993) , from the fileserver.

lessons of software engineering should be
used by TEX macro writers as well. Those of

us who try in software engineering are not

overly successful in keeping thmgs simple

and it is not surprising that little of the right

way of doing software has been included in

the construction of TEX macros.'

Acknowledgements

Wlodek Bzyl and Nelson Beebe are lundly acknow-

ledged for their help in clearing up the contents and
correcting my use of English, respectively.

Bibliography

Appelt, W. "Macros with Keyword Parameters". TUG-

boat , 8 (2) , 182 - 184, 1987.

Appelt, W. "TEX fiir Fortgeschrittene - Programmier-

t e c h k e n und Makropakete". Addison-Wesley,

1988.

Beebe, N.H.F. "The TUGlib Server". MAPS91.2, 11 7 -

123, 1991. (Also in T~Xline 11.)

Beeton, B.N, R.F Whitney. "TUGboat Author's Guide".

TUGboat, 10 (3) , 378 - 385, 1989. (Not com-

pletely up-to-date.)

EARN Association "Guide to Network Resource

Tools", 1993.

Eijkhout, V. "TEX by Topic". Addison-Wesley, 1992.

Fine, J. "Some basic control macros for TEX". TUG-

b o a t l 3 (1) , 75 - 83 , 1992.

Greene, A.M. "T~Xreation-Playmg games with TEX'S

mind". TUGboat, 10 (4) , 691 - 705 , 1989.

Hendrickson, A. "MacroT~X". 1989.

Hendrickson, A. "Getting T~Xnical: Insights into TEX

Macro Writing Techques". TUGboat, 11(3) ,

359 - 370, 1990. (Also M S 9 0 . 2 .)

Jeffrey, A. "Lists in TEX'S mouth". TUGboat, 11(2) ,

237 - 244 ,1990 .

Jensen, K., and N. Wirth. "PASCAL user manual and

report". Springer-Verlag, 1975.

Kabelschacht, A. "\expandafter vs. \ l e t and \def

in Conditionals and a Generalization of plain's

\loopw. TUGboat, 8 (2) , 184 - 185, 1987.

Knuth, D.E. "The T~Xbook". Addison-Wesley, 1984.

Laan, C.G van der. "Typesetting Bridge via TEX. TUG-

boat , 11(2) , 265 - 276, 1990.

Laan, C.G van der. "Math into BLUes". Part I: Mourn-

ing. Proceedings TUG ' 91 , TUGboat, 12(4) , 485 -

501, 1991.

Part 11: Sing Your Song. Proceedings EuroTEX ' 9 1 ,

GUTenberg Cahiers, 10&11, 147 - 170, 1991.

TUGboat, Volume 14 (1993) , No. 3 -Proceedings of the 1993 Annual Meeting 3 17

Kees van der Laan

Laan, C.G van der. "Tower of Hanoi, Revisited". TUG-

boat, 13(1) , 91 - 94 , 1992.

Laan, C.G van der. "FIFO & LIFO Incognito". EuroTEX

' 92 , 225 - 234,1992. (Also in MAPS92.1. Anelab-

orated version is FIFO & LIFO Sing the BLUes.)

Laan, C.G van der. "Table Diversions". EuroTEX ' 9 2 ,

191 - 211, 1992. (A little adapted in MAPS92.2.)

Laan, C.G van der. "FIFO &LIFO Sing the BLUes". TUG-
boat, 14(1) , 54 - 6 0 , 1993. (Also in MAPS92.2,

139 - 144, 1992.)

Laan, C.G van der. "Spivak's Euvre". W S 9 2 . 1 , 1 3 9 -

142, 1992.

Laan, C.G van der. "Sorting in BLUe". These Proceed-
ings. (The complete article is in MAPS93.1, 149 -

170. Heap sort encoding has been released in

MAPS92.2.)

Laan, C.G van der. "Typesetting number sequences".

MAPS93.1, 145 - 148, 1993.

Laan, C.G van der. "Manmac BLUes - Or how to type-

set a book via TEX". MtZPS93.1, 171 - 191, 1993.

(To be submitted TUG ' 9 4)

Laan, C.G van der. "AMS BLUes -professionals at
work". MAPS93.1, 192 - 212, 1993.

Laan, C.G van der. "TUGboat BLUes -how TEXies do
it". W S 9 3 . 2 (In progress).

Larnport, L. "LATEX, user's guide & reference manual".

Addison-Wesley, 1986.

Maus, S. "An expansion power lemma". TUGboat,

12 (2) , 277, 1991.

Pittman, J.E. "Loopy.T~X". TUGboat9(3), 289 - 291,

1988.

Raichle, B. In: V. Eijkhout. "Oral TEX: Erratum". TUG-

boat, 13(1) , p. 7 5 , 1992.

Salomon, D. "NTG's Advanced TEX course: Insights

& Hindsights". MAPS92 Special, 1992. Revised - 500p.

Schwarz, N. "Einfuhrung in TEX". Addison-Wesley,

1987.

Siebenmann, L. "Elementary Text Processing and
Parsing in TEX-The Appreciation of Tokens".

TUGboat, 13(1) , 62 - 7 3 , 1992.

Spivak, M.D. "3m.S-TEX - The Joy of TEX". American

Mathematical Society, 1986.

Spivak, M.D. "L9.5-TEX-The Synthesis". TEX-

plorators, 1989.

Spivak, M.D. "L%S-TEX Wizard's manual". TEX-

plorators, 1991.

Youngen, R.E. "TEX-based production at AMS".

MAPS92.2, 6 3 - 6 8 , 1992.

318 TUGboat, Volume 14 (1993) , No. 3 -Proceedings of the 1993 Annual Meeting

Sorting withm TEX

Kees van der Laan
Hunzeweg 57, 9893PB

Garnwerd, The Netherlands
05941 1525

Internet: cgler i s c l . rug. nl .

Abstract

It is shown how sorting -numbers and lexicographic - can be done completely
within TEX. Lexicographic sorting allows words with ligatures and diacritical
marks. As applications I selected sorting of address labels, and sorting and
compressing i ndex . tex, Knuth's index reminders file. It is claimed that a set
can be sorted within TEX once the ordering of the set is defined and encoded in a
comparison macro, in compliance with the parameter macro \cmp.

Introduction

This paper is an abridged version of the original
"Sorting in BLUe" which has appeared in NTG's
MAPS93.1. In this version I strove to get across the
flavour of what can be done within TEX with respect
to sorting.

The original version-not limited by space,
some 20 pages - contains the in-depth treatment,
the detailed explanations, the various abstractions
(parameterization over the comparison operation,
sorting process, lexicographc ordering, and the
handling of accents and ligatures), more examples,
all the macro listings, as well as a listing of my test
driver. Apart from sorting the storing of the data
and the final typesetting-with its parameter for
separation, and for numbers the use of range nota-
tion- is dealt with in that paper. I also included an
extensive list of references.

In this paper I'll show, and now and then ex-
plain, how to use the Ben Lee User level sorting
macros \ s o r t n -for number sorting, \sor taw -

for sorting ASCII words, and \ so r tw - for general
lexicographic sorting. At the lower level I provided
in the appendices the blue collar macros \heapsort

and \ qu i ckso r t .

Definitions and notations. A sequence is defined as
a row of numbers or words, respectively, separated
by spaces. The structure \csname(k)\endcsname is
associated with an array with index k = 1 , 2 , . . . , n.
To denote in the documentation a value pointed
by the number (k), I made use of \va1{ (k) I ,
with \ de f \ va l #l{\csname#l\endcsname). Macro
names take suffix -n, -w, when specific for number
and word data respectively. For example, \ s o r t n

stands for sort numbers, \p r tw stands for print

words. I have typeset the in-line results of the ex-
amples in bold face.

I have used the shorthand notation \ea,

\nx, and \ag for \expandafter, \noexpand, and
\a f te rg roup , respectively. \k is used as counter
to loop through the values 1 ,2 , . . . , n, the index do-
main. \n contains the maximum number of se-
quence elements, n. \i f c o n t i nue is used for con-
trolling loops. The macro \seq with end separator
\qes stores the supplied data in the array.

For typesetting the data structure I used the
macros \ p r t n and \prtw, respectively. These are
not explained here either. Loosely speaking they
typeset the array, \l.. . \ (n) which contains the
items, as you would expect.

Some background. The reader must be aware of the
differences between

the index number, (k)

the counter variable \k, with the value (k) as
index number

the control sequences \ (k) , k = 1 , 2 , . . . , n, with
the items to be sorted as replacement texts.

When we have \def\3(4) \def\4(5} \def\5(6}

then \3 yields 4,

\csname\3\endcsname yields 5, and
\csname\csname\3\endcsname\endcsname

yields 6.
Similarly, when we have \k3 \def\3{name}

\def\name{action) then \ the\k yields 3,

\csname\the\k\endcsname yields name, and
\csname\csname\the\k\endcsname\endcsname

yields acti0n.l To exercise shorthand notation the
last can be denoted by \ va l (\ va l (\ the\k}} .

1. Confusing, but powerful!

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Kees van der Laan

Another \csname. . . will execute \act ion,
whch can be whatever you provided as replacement
text.

Sorting of Numbers

Sorting of numbers alone is not that hard to do
withm TEX. To design a consistent, orthogonal, well-
parameterized, and nevertheless as simple as pos-
sible set of macros is the challenge, which I claim to
have attained.

Example of use. After \ input heap \ input s o r t

\seq314 1 27\qes\sortn

yields: 1, 27, 314.

Design choices. The backbone of my 'sorting in an
array' is the data structure

with k the role of array index and n the number of
items to be sorted.

This encoding is parameterized by \cmp, the
comparison macro, which differs for numbers,
strings, and in general when more sorting keys have
to be dealt with. The result of the comparison is
stored globally in the counter \ s t a tu s .

Encoding: Input. The elements are assumed to be
stored in the array \ (k) , k = 1,2 , . . . n . The counter
\ n must contain the value (n).

Encoding: Result. The sorted array \l, \2 , . . . , \ (n) ,
with \va l1 5 \va12 5 . . . 5 \val (n) .

Encoding: The macros.

\def \sor tn{ \ le t \cmp\cmpn\sor t \pr tn}

%

\def\cmpn#l#2{%#1, #2 ex-
pand i n t o numbers
%Result: \ s t a tu s= 0 , 1 , 2 i f
% \val {#l} =, >, < \val{#2}.
\i fnum#l=#2\gl obal \ s t a tu s0 \el s e

\ i fnum#l>#2\gl obal \ s t a t u s 1 \ e l s e
\global\s tatus2 \ f i \ f i }

%

\def\sort{\heapsort}.

Encoding : Explanation. \cmpn has to be defined
in compliance with the parameter macro \cmp.
\ s o r t must reference to one of the blue collar sort-
ers. \ p r tn typesets the numbers. That is all.

The above shows the structure of each of the
Ben Lee User sorting macros.

Sorting: \sortn. A (pointer) \def\sortn{ . . . 1 is
introduced whch has as replacement text the setting
of the parameter \cmp, and the invocations of the

actual sorting macro and the macro for typesetting
the sorted sequence.

Comparison operation: \cmpn . The result of
the comparison is stored globally in the counter
\ s t a tu s . The values O , 1 , 2 denote =, >, <, respect-
ively.

Exchange operation: \xch . The values can be ex-
changed via

\def\xch#l#2{%#1, #2 counter var iab les
\ea\let\ea\auxone\csname\the#l\endcsname

\ea\let\ea\auxtwo\csname\the#2\endcsname

\ea\globa1\ea\let\csname\the#2\endcsname

\auxone
\ea\global\ea\let\csname\the#l\endcsname

\auxtwo} .

The macro for typesetting a sequence of numbers in
range notation is provided in the full paper as well
as in the special short paper about typesetting num-
ber sequences, whch has also appeared in NTG's
MAPS93.1.

Lexicographic Sorting

Given the blue collar workers \heapso r t and
\qui cksort , respectively, we have to encode the
comparison macro in compliance with the parameter
macro \cmp. But lexicographc sorting is more com-
plex than number sorting. We lack a general compar-
ison operator for string^,^ and we have to account
for ligatures and diacritical marks.

In creating a comparison macro for words, flex-
ibility must be built in with respect to the ordering
of the alphabet, and the handling of ligatures and
diacritical marks.

Example of use: Sorting ASCII words.
After \ input heap \ input s o r t

\seq a b aa ab bc bb aaa\qes\sortw

yields: a aa aaa ab b bb bc.

Example of use: ij-ligatures.
After \ input heap \ input s o r t

\seq{\i j}st{\i j}d {\i j} {\i j) s in ti k

t \ i j\qes\sortw

yields: in tik tij ij ijs ijstijd.

Example of use: Sorting accented words.
After \ input heap \ input s o r t

\seq b \ ' e b \ ' e \ ' a \ ' a ge\"urm geur aa a
ge{\i j l k t be ge\"\i nd gar\c con\qes

2. It is not part of the language, nor provided in
plain or elsewhere with the generality I needed.

320 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Sorting within TEX

\sortw

yields: a aa a8 be be be garcon geind geur geiirm
geijkt.

Because of the complexity and the many de-

tails involved I restricted myself in this paper to the
simplified cases: one-(ASC1I)letter-words, and ASCII

strings, of undetermined length.

One-(ASCI1)letter-words. The issue is to encode the

comparison macro, in compliance with the para-

meter macro \cmp. Let us call this macro \cmpol w . ~

Its task is to compare one-letter words and store the

result of each comparison globally in the counter

\ s t a tu s . As arguments we have \defs with one let-

ter as replacement text.

\def\cmpolw#l#2{%#1, #2 a re defs

%Result: \ s t a tu s= 0 , 1 , 2 i f

% \val {#l} =, >, < \val{#2}.
\ea\chardef\ea\cone\eaL#l{}%

\ea\chardef\ea\ctwo\ea'#2{}%

\global \ s t a tu s0 \I ge\cone\ctwo}

%

\def\ l ge#l#2{%#1, #2 are 1 e t t e r values

%Result: \ s t a tu s= 0 , 1, 2 i f #1 =, >, < #2

\ifnum#l>#2\global\statusl \ e l s e

\ i fnum#l<#2\global\status2 \ f i \ f i 1

Example of use. After the above

\ s e q z y A B a b d e m n o p z z u v c g
q h j I i 1 k n t u r s f Y \ q e s

\l et\cmp=\cmpol w\sort\prtw

y i e 1 d s : A B I Y a b c d e f g h i j k l m n n o p q r s t
u u v y z z z .

Explanation \cmpolw. In order to circumvent the

abundant use of \expandaftem, I needed a two-
level approach: at the first level the letters are

'dereferenced', and the numerical value of each

replacement text is provided as argument to the

second level macro, \ l ge.4

ASCII words. The next level of complexity is to al-

low for strings, of undetermined length and com-

posed of ASCII letters. Again the issue is to encode

the comparison macro, in compliance with \cmp. Let

us call the macro \cmpaw.j Its task is to compare AS-
CII words and to store the result of each comparison

globally in the counter \ s ta tus .
The problem is how to compare strings letter

by letter. Empty strings are equal. Thls provides a

natural initialization for the \ s t a tu s counter. As ar-

guments we have \defs with words of undetermined

length as replacement text.

\def\cmpaw#l#Z{%#l, #2 are defs

%Result: \ s t a tu s= 0 , 1, 2 i f

% \val{#l} =, >, < \val{#2}.
{\ let\nxt\nxtaw\cmpc#1#2}}

%

\def\cmpc#l#Z{%#l, #2 a re defs

%Result: \ s t a tu s= 0 , 1, 2 i f

% \val {#I} =, >, < \val{#2}.
\global\statusO \conti nuetrue

{\l oop\i fx#l\empty\conti nuefal s e \ f i

\ifx#2\empty\conti nuefal s e \ f i
\ i fcont i nue\nxt#l\nxtt \nxt#2\nxtu

\I ge\nxtt\nxtu

\ifnumO<\status\conti nuefal s e \ f i

\repeat}\i fnumO=\status

\ i f x# l \empty \ i f x#2 \empty \e l s e
\gl obal \s tatus2 \ f i

\el se \ i f x#2 \empty \g loba l \ s ta tus l \ f i

\ f i \ f i }

%

\def\nxtaw#l#2{\def\pop##l##2\pop{\gdef
#l{##2}\chardef#2'##l}\ea\pop#l\pop}

Example of use. After the above

yields: a aa aaa ab b bb bc.

Explanation comparison: \cmpaw. The macro is

parameterized over the macro \nxt. The main part

of \cmpaw has been encoded as \ ~ m p c . ~ (That part

is also used in the general case.)
We have to compare the words letter by let-

ter. The letter comparison is done by the already
available macro \I ge. The \I ge invocation occurs

within a loop, whch terminates when either of the

strings has become empty. I added to stop when the

words considered so far are unequal. At the end the

status counter is corrected if the words considered
are equal and one of the # is not empty: into 1, if #1

is not empty, and into 2, if #2 is not empty.

Explanation head and tail: \nxt. The parameter

macro \nxt has the function to yield from the re-

placement text of its first argument the ASCII value

3. Mnemonics: compare one letter words.

4. Mnemonics: letter greater or equal. A nice ap-

plication of the use of \ea, \chardef, and the con-

version of a character into a number via the quote: '.
Note that the values of the uppercase and lowercase
letters differ (by 32) in ASCII.

5 . Mnemonics: compare ASCII words.

6. Mnemonics: compare character.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Kees van der Laan

of the first letter and deliver this value as replace-

ment text of the second argument.' The actual

macro \nxtaw pops up the first letter and delivers

its ASCII value - a \chardef - as replacement text
of the second argument.

Sorting Address Labels

Amy Hendrickson used sorting of address labels to

illustrate various macro writing T@niques. However,

she used external sorting routines. Here I will do the

sorting within TEX, and enrich her approach further

by separating the mark-up phase from the data base

query and the report generating phases.
For the imaginative toy addresses of the three

composers: Schonberg, Webern, Strawinsky, I used

the following definitions.

\def\schonberga{\def\i n i t i a1 {A}

\def\sname{Arnold}\def\cname{Sch\"onberg}

\def\street{Kaisersallee}\def\no{lO}
\def\county{}\def\pc{9716HM}

\def\phone{050-

773984}\def\email{asetuw.au}
\def\ci ty {V ienna} \def \count ry{AU}}

%

\def\strawinskyi {\def\ ini t i a l { I}

\def\sname{Igor}\def\cname{Strawinsky}

\def\street{Longwood Ave}\def\no{57}

\def\county{MA)\def\pc{O2146}

\def\phone{617-31427)
\def\emai 1 { i goreai . m i t . edu}

\def \c i ty {Boston} \def \country{USA}}

%

\def\weberna{\def\i n i t i a1 {A]
\def\sname{Anton}\def\cname{Webern}

\def\street{Amstel}\def\no{l43}
\def\county{Noord-

Holl and}\def\pc{9893PB}

\def\phone{020-

225143}\def\emai 1 {awhva. nl }

\def\c i ty{Amsterdam}\def\country{NL}}

%

%the l i s t w i t h ac t ive l i s t separa tor \as

%to be defined by the user

\def\addressl i st{\as\strawi nskyi

\as\weberna\as\schonberga)

For the typesetting, I made use of the following
simple address label format

\def\tsa{%The current address i n fo i s s e t

\par\i n i t i a1 s \cname \par

\no\ \ s t r e e t \ \ci ty\par

\PC\ \county\ \country\par}
%

\def\i n i t i a l s { \ e a \ f i f o \ i n i t i a l \ o f i f }

\def\f i fo#l{\i fx \of i f# l \o f i f \ f i # l . \ f i fo}

\def\ofi f # l \ f i fo{\f i}

Example: Selection of addresses per country. Sup-

pose we want to select (and just \ t s a them for sim-

plicity) the inhabitants from Holland from our list.

This goes as follows.

with result

A. Webern

143 Arnstel Amsterdam
9 8 9 3 ~ ~ Noord-Holland NL

Example: Sorting address labels.

Amy's example can be done completely within TEX,

as follows.

%Prepare so r t ing
\def\as#l{\advance\kl \ea\xdef\csnarne

\ the\k\endcsname{\ea\gobble\str ing#l}}

%

\def\gobbl e#l{}

%

\kO{}\addressl i st%Create array

%to be sorted

\n\k\def\prtw{}%Suppress defau l t \prtw

\sortw %Sort t he l i s t
Oflypeset addresses, a1 phabeti c-

a1 1 y ordered

\kO
\ loop\ifnum\k<\n\advance\kl

\csname\csname\the\k\endcsname\endcsname

\vski p lex\ t sa

\ repeat

with result

A. Schonberg

10 Kaisersallee Vienna
9716HM AU

I. Strawinsky
5 7 Longwood Ave Boston

02146 MA USA

A. Webern

143 Amstel Amsterdam
9893PB Noord-Holland NL

7. Splitting up into 'head and tail' is treated in

the T~Xbook, Appendix D.2, p.378, the macro \lop.

There, use has been made of token variables instead

of \defs.

322 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Sorting within TEX

Sorting Knuth's Index Reminders

An index reminder, as introduced by Knuth, consists
of index material to be further processed for type-
setting an index. In the T~Xbook, p. 424, Knuth gives
the syntax of an index reminder

(w o r d) U! (d i g i t) page n u m b e r) .

The reminders, one per line, are written to a file be-
cause only the OTR knows the page numbers. Knuth
considered t h s file, i ndex . tex,

'. . . a good first approximation to an index.'

He also mentions the work of Winograd and paxton8
for automatic preparation of an index. Here we will
provide a second approximation to an index: the
index reminders are sorted and compressed. The
sorting is done on the three keys

primary key: (w o r d)
secondary key: (d i g i t) , and
tertiary key: (p a g e n u m b e r)

The compressing comes down to reducing the index
reminders with the same (w o r d) (d i g i t) part to one,
with instead of one page number all the relevant
page numbers in non-decreasing order.

Example: Sorting on primary, secondary and ter-
tiary keys.

us call t h s macro \cmpi r.1° Eachvalue is composed
of: a word (action: word comparison), a digit (ac-
tion: number comparison), and a page number (ac-
tion: (page) number comparison).

Then we have to account for the reduction of
'duplicate' index entries, and finally the typesetting
has to be done.

The comparison. I needed a two-level approach.
The values are decomposed into their components
by providing them as arguments to \decom.ll The
macro picks up the components
-the primary keys, the (w o r d) ,
-the secondary keys, the (d i g i t) , and
-the tertiary keys, the (p a g e n u m b e r) .
It compares the two primary keys, and if necessary
the two secondary and the two tertiary keys success-
ively. The word comparison is done via the already
available macro \cmpaw.

To let t h s work with \ so r t , we have to \ l e t -

equal the \cmp parameter to \cmpi r.

The comparison macro.

\def\cmpi r # l #2 {%# l , #2 de f s

%Result : \ s ta tus= 0, 1, 2 i f
% \ va l { # l } =, >, < \val(#2}

\ea\ea\ea\decom\ea#l\ea;#2.}

%

\def\decom#l !#2 #3;#4 ! # 5 #6.{%

\def\one{#l} \def\ four{#4}\cmpaw\one\four

\ifnumO=\status%Compare second key

! 2 2l \def\g{aa ! 1 21 \ifnum#2<#5\global\status2 \e l se

\i fnum#2>#5\gl obal \ s t a t u s 1 \ e l se

%Compare t h i r d key
sepw\\ \nul l \i fnum#3<#6\gl obal \ s ta tus2

ndent \ e l se \ i fnum#3>#6\gl obal \ s t a t u s 1 \ f i
a f t e r s o r t i n g \ \ [. 5ex]\prtw}

\ h f i l \ v t o p { \ h s i ze2.5cm\noi ndent

a f t e r r educ t i on \ \ [. 5ex]\redrng\prtw}

\ h f i 1 \ v top{ \hs i ze2cm\noi ndent

t ypese t i n \ \ i ndex: \\[. 5ex] \ p r t i nd. } \ h f i 1

The above yieldsg
after sorting: after reduction: typeset in

a ! l 1 a !1 1-3 index:

a ! l 2 a !2 2 a 1-3
a ! 1 3 aa !l 1, 2 \a 2

a!2 2 ab !1 1 aa 1, 2
aa !1 1 b !O 1 ab 1
aa !1 2 z !3 1 b 1

ab !l 1 (z) 1.
b !O 1
~ ! 3 1

Design. Given the sorting macros we have to encode
the special comparison macro in compliance with
\cmpw: compare two 'values' specified by \defs. Let

\f i
\ f i

\ f i

\fi 1

Reducing duplicate word-digit entries. The idea is
that the same index entries, except for their page

8. Later Lamport provided makeindex and Sa-
lomon a plain version of it, to name but two persons
who contributed to the development. The Winograd
Paxton Lisp program is also avadable in Pascal.
9. The unsorted input can be read from the ver-

batim listing.
10. Mnemonics: compare index reminders.
11. Mnemonics: decompose. In each comparison
the defs are 'dereferenced', that is, their replacement
texts are passed over. T h s is a standard T~Xnique:
a triad of \eas, and the hop-over to the second
argument.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Kees van der Laan

numbers, are compressed into one, thereby redu-
cing the number of elements in the array. Instead
of one page number all the relevant page numbers

are supplied in non-descending order in the remain-
ing reminder, in range notation. The macro is called

\redrng12 and is given below.

\def\redrng{%Reduction of \ l , . . . , \n , w i t h

%page numbers i n range representat ion

{\kl\kkO

\ea'\let\ea\record\csname\the\k\endcsname

\ea\spl i twn\record. \l et\refer\word

\ l et\nrs\empty\prcrng\num
\ l oop\i fnum\k<\n\advance\kl

\ea\let\ea\record\csname\the\k\endcsname

\ea\spl i twn\record .%

\ifx\refer\word%extend \nrs with number

\prcrng\num
\else%write record t o \ k k

\advance\kkl \ s t r n r s \ea\xdef

\csname\the\kk\endcsname{\refer{} \nrs}

\l et\nrs\empty\i ni t\num\prcrng\num

\ l et\refer\word
\ f i

\ repeat\ i fnuml<\n\advance\kkl \ s t rn r s \ ea

\xdef\csname\the\kk\endcsname{\word{}

\nrs}\gl obal \n\kk\fi}}
%auxi 1 i a r i e s

\def\spl i twn#l !#2 #3.{\def\word{#l !#2}%
\def\num{#3)}

%

\ de f \ p r c rng# l { \ i n i t { # l } \ de f \ p r c rng## l {%

\ifnum##l=\l s t \ e l se\ i fnum##l=\sl s t

\I s t \ s l st\advance\sl s t 1 \ e l s e
\ s t r n r s \ i n i t{##l}\f i \ f i}}

%

\def\s trnrs{\di f \ l st\advance\di f - \ f r s t

\edef\nrs{\i fx\nrs\empty\el se\nrs\sepn\f i
\ the\f r s t \ i fnumO<\di f

\ i fnuml=\di f\sepn\the\l s t
\e lse\nobreak-- \nobreak\ the\ ls t

\ f i

\ f i 11
Explanation: reduction of entries. The encoding is

complicated because whle looping over the index
reminders either the reminder in total or just the

page number has to be handled. The handling of
the page numbers is done with modified versions

of \prc, \ p r t f 1, called respectively \prcrng and

\strnrs.13 I encoded to keep track of the numbers
in the macro \nrs , in the case of duplicate word-

digit-entries. Another approach is whle typesetting

the array element to process the page numbers via

\prc.

Typesetting index entries. Knuth has adopted the

following conventions for coding index entries.

The typesetting as such can be done via the following

macro.

Mark up

A{. . . }

{ . . . }
A l . . . I

" I \ . . . I
I . . . I

\def\typi nd#l{%#l a def

\ea\spl i t t o t # l . %

\i fcase\di gi t\word\or
{\tt\word}\or

{\tt\char92\word}\or

$\l angl e\hbox{\word}\rangl e$ \ f i { }

\pagenrsI
%

\ d e f \ s p l i t t o t # l !#2 #3.{\def\word{#l}%

\chardef\digi t#2{}\def\pagenrs{#3}}

%

\ de f \ p r t i nd { { \ de f \ \ { \ h f i l \ b reak } \ k \ k ze ro

\def \sep{\ let \sep\sepw}%

\ loop\ifnum\k<\n\advance\kl \sep
\ea\typind\csname\the\k\endcsname

\repeat}}

The typesetting of the index a la T~Xbook Appendix I

has been dealt with in the Grandmaster chapter of

the T~Xbook, p.261-263.

* I . . . I denotes manmac's, TUGboat's,. . .verbatim.

Typeset in copy*

. . .
'silent'

I . . . I
] \ . . . I

Epilogue

Ln i ndex . t ex

. . .u!Ou(pageno)

. . . u!Ou(pageno)

. . . U! U p a g e no)

. . . u! 2u(pageno)

No robustness was sought. The encodings have been
kept as simple and flexible as possible. As a con-

sequence no attention has been paid to safeguarding

goodies like the prevention of name confusions with

those already in use by an author.

Silent redefinitions do occur when not alert. Be-
ware!

(...) / . . . U! 3u(page no)

Bibliography

Laan, C.G van der. "Sorting in BLUe.". MAPS93.1,
149 - 169, 1993.

12. Mnemonics: reduce (in range notation).

13. Mnemonics: process with ranges, respectively

store numbers.

324 TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Sorting wlthn TEX

Appendix Heap Sort

The process consists of two main steps: creation of a heap, and sorting the heap. A sift operation is used in
both.

In comparison with my earlier release of the code in MAPS92.2, I adapted the notation with respect to
sorting in non-decreasing order.14

What is a heap? A sequence a] , a2,. . . ,a,, is a heap if ak 2 a2k A ak r a ~ + l , k = 1,2, . . . , n t 2 , and
because a,+] is undefined, the notation is simplified by d e h g ak > a,+], k = 1,2 , . . . , n .

For example, a tree and one of its heap representations of 2,6,7,1,3,4 read

The algorithm. In a pseudo notation the algorithm, for sorting the array a[l:nl, reads
%heap creation
1 : = n d i v 2 + 1;

while1 # l d o l : = 1 - l ; s i f t (a , l , n) o d

%sorting
r := n;
whiler # 1 d o (a [l] , a [r]) := (a[r] ,a[l])%exchange

r : = r - l ; s i f t (a , l , r j o d

%sift #1 through #2
j := #1

while2j 2 #2 A (a [j] < a [2 j] v a [j] < a [2 j + l]) d o

m i : = 2 j + i f a [Z j] > a [2 j + l] t h e n O e l s e l f i

exchange(a[j] , a [m i] j j := m i od

Encoding: Purpose. Sorting values given in an array.

Encoding: Input. The values are stored in the control sequences \ l , . . . , \(n). The counter \n must
contain the value (n) . The parameter for comparison, \cmp, must be \l et-equal to \cmpn, for numerical
comparison, to \cmpw, for word comparison, to \cmpaw, for word comparison obeying the ASCII ordering, or
to a comparison macro of your own. (The latter macro variants, and in general the common definitions for
\heapsort , and \qu icksor t , are supplied in the file s o r t . tex , see van der Laan (1993).)

Encoding: Output. The sorted array \l, \2, . . . \(n), with \ v a l l I \va12 5 . . . 5 \ va l (n) .

Encoding: Source.

%heapsor t . tex Jan, 93

\newcount\n\newcount\lc\newcount\r\newcount\ic\newcount\uone

\newcount \ jc \newcount \ j j \newcount \ j jone \newi f\ i fgoon

%Non-descendi ng s o r t i n g

\def \heapsor t {%data i n \1 t o \n

\ r \n\heap\ i c l

{\l oop\i fnuml< \ r \xch\ i c \ r \advance\r-1 \ s i f t \ i c \ r \ repea t } }

%

\def\heap{%Transform \ l . . \ n i n t o heap

\I c\n\d i v i de\ l c2{}\advance\l c l

{\l oop\ i f numl<\l c\advance\l c - 1 \ s i ft\ l c\n\repeat}}

%

\ de f \ s i f t # l #2 {%#1 , #2 counter v a r i a b l e s

l 4 It is true that the reverse of the comparison operation would do, but it seemed
to adapt the notation of the heap concept with the smallest elements at the bottom.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

more consistent to me

Kees van der Laan

\jj#l\uone#2\advance\uonel \goontrue

{\ loop\ j c\ j j \advance\ j j \ j j
\i fnum\j j<\uone \ j jone\ j j \advance\ j j o n e l

\ i fnum\ j j<#2 \cmpval \ j j \ j jone

\ifnum2=\status\j j \ j jone\f i

\f i \cmpval \ j c \ j j\i fnum2>\status\goonfal s e \ f i

\e l se\goonfal se

\f i

\ i f goon \ xch \ j c \ j j \ r epea t } }

%

\def\cmpval#l#2{%#1, #2 counter var iab les

%Result: \status= 0, 1, 2 i f
%values pointed by

% #1 =, >, < #2

\ea\let\ea\aone\csname\the#l\endcsname

\ea\let\ea\atwo\csname\the#2\endcsname

\cmp\aone\atwo}

\endi nput %cg l@r i s c l . rug. n l

Explanation: \heapsort. The values given in \l, . . . \{n), are sorted in non-descending order.

Explanation: \heap. The values given in \1, . . . , \ (n) , are rearranged into a heap.

Explanation: \ s i f t . The first element denoted by the first (counter) argument has dsturbed the heap. Sift
rearranges the part of the array denoted by its two arguments, such that the heap property holds again.

Explanation: \cmpval. The values denoted by the counter values, supplied as arguments, are compared.

Examples o f use: Numbers, words. After \ i npu t heap \ input s o r t

\def\l{314}\def\2{l}\def\3{27}\n3 \let\cmp\cmpn\heapsort

\begi n{quote}\prtn, \end{quote}

%

\def\l{ab}\def\2{c}\def\3{aa}\n3 \let\cmp\crnpaw\heapsort

\begin{quote}\prtw,\end{quote}

and

\def\l{j\ij}\def\2{ge\"urm}\def\3{gar\c con}\def\4{\'el\'eve}\n4

\l et\cmp\cmpw {\accdef\heapsortl

\begi n{quote}\prtw\end{quote}

yieldslj

1, 27, 314,

and

eleve garqon geiirm jij.

\accdef suitably redefines the accents withn this scope.

326 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Sorting withn TEX

Appendix: Quick Sort

The quick sort algorithm has been discussed in many places. Here the following code due to Bentley has
been transliterated.16

procedure QSor t (L, U)
i f L<U then Swap(X[l], X[RandInt(L,U)]) T:=X[L] M:=L

f o r I : = L + l t o U do i f X[I]<T M:=M+l Swap(X[M] , X[I]) f i od

Swap(XCL1, X[MI 1
QSort(L, M-1) QSort(M+l, U)

f i

Encoding: Purpose. Sorting of the values given in the array \ (low) , . . . , \ (up) .

Encoding: Input. The values are stored in \ (low) , . . . , \ (up) , with 1 I l o w up 5 n. The parameter for

comparison, \cmp, must be \l et-equal to \cmpn, for number comparison, to \cmpw, for word comparison,
to \cmpaw, for word comparison obeying the ASCII ordering, or to a comparison macro of your own. (The
latter macros, and in general the common definitions for \heapso r t , and \qu i cksor t , are supplied in the
file s o r t . t e x , see van der Laan (1993).)

Encoding: Output. The sorted array \ (l ow) , . . . \ (up) , with \ va l (l ow) 5 . . . 5 \ va l (up) .

Encoding: Source.

%quick. t e x I a n 93

\newcount\low\newcount\up\newcount\m

\def \qu i cksort{OA/al ues g iven i n \ low, . . . ,\up a re so r t ed , non-descendi ng .
%Parameters : \cmp, comparison.

\i fnum\l ow<\up\el se \b r k \ f i

% \ re f va l , a re fe rence va lue se lec ted a t random.

\m\up\advance\m-\l ow%i ze -1 o f a r r ay p a r t

\i fnumlO<\m\rnd\mul ti p l y\m\rndval

\divide\m99 \advance\m\low \xch\low\m

\ f i
\ea\let\ea\refva1\csname\the\low\endcsname

\ m \ l ow\k\l ow\l e t \ r e f v a l cop \ re fva l

{\l oop\i fnum\k<\up\advance\kl

\ea\let\ea\oneqs\csname\the\k\endcsname

\cmp\refval\oneqs\ifnuml=\status\global\advance\ml \xch\m\k\f i

\l e t \ r e f v a l \ r e f v a l cop

\ repeat} \xch\ l ow\m

{\up\m\advance\up-1 \qu i c k s o r t } { \ l ow\m\advance\l o w l \qu i c kso r t } \ k r b }

%

\ de f \ b r k# l \ k rb { \ f i } \ de f \ k rb { \ r e l ax }

\endi nput %cg l@r i s c l . rug. n l

Explanation. At each level the array is partitioned into two parts. After partitioning the left part contains
values less than the reference value and the right part contains values greater than or equal to the reference
value. Each part is again partitioned via a recursive call of the macro. The array is sorted when all parts are
partitioned.

In the TEX encoding the reference value as estimate for the mean value is determined via a random
selection of one of the elements. The random number is mapped into the range [l o w : u p] , via the linear
transformation \ low + (\up - \ low) c \ rndval l99.l'

The termination of the recursion is encoded in a TEX peculiar way. First, I encoded the infinite loop.
Then I inserted the condition for termination with the \f i on the same line, and not enclosing the main part
of the macro. On termination the invocation \b rk gobbles up all the tokens at that level up to its separator
\krb, and inserts its replacement text - a new \f i -to compensate for the gobbled \f i .

l6 L, U have been changed in the TEX code into low, up.
Note that the number is guaranteed within the range.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Kees van der Laan

Examples: Numbers, words. After \ i n p u t qu i ck \ i n p u t s o r t

\def\l{314}\def\2{l}\def\3{27}\n3 \ lowl\up\n\let\cmp\cmpn

\ qu i ckso r t

\begi n {quo te } \p r tn , \end{quote}

%
\def\l{ab}\def\2{c}\def\3{aa}\def\4{\i j } \ d e f \ 5 { i k} \def\6{z}\def\7{a}\n7

\l owl\up\n\l et\cmp\cmpw \qu i ckso r t

\begin{quote}\prtw,\end{quote}

and

\def\l{j\ij}\def\2{ge\"urm}\def\3{gar\c con}\def\4{\'el\'eve}\n4
\l owl\up\n\l et\crnp\cmpw {\accdef\qui c kso r t)

\begin{quote}\prtw.\end{quote}

ylelds18

1, 27, 314,

a aa ab c i k i j z,

and

eleve garcon geurm jij.

l8 \accde f suitably redefines the accents hithin this scope.

328 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Teachng Digital Typography - the Didot Project

Mary Dyson
Department of Typography & Graphic Communication

University of Reading

2 Earley Gate

Whiteknights, Reading

RG6 2AU UK

Internet: 1 tsdyson@rdg . ac. uk

Abstract

This paper briefly outlines the Didot project on teaching digital typography. One

of the key issues, namely identifying the users of digital typography, is explored

and related to the type of material that could be included in a curriculum for

digital typography. Teaching methods and material that have been developed in
t h s area are outlined, with particular reference to the work at Reading.

The Didot Project

Introduction. The acronym Didot stands for "DIgit-

ising and Designing of Type" and this project has

been funded as part of the European COMETT I1 pro-

gramme. The project started in 1990 and is due to

finish in September 1993. The partners come from

research centres, academic institutions, commercial
organisations and studios in France, Switzerland,

Germany, UK, Spain, Greece and Italy.

Aims. The aims of the project are to:

design, implement and evaluate a curriculum

for digital typography, designed for both

computer-oriented specialists and graphc
artists and typographers;

organise seminars and workshops for both
groups; and

publish and distribute information.

Key Issues

Promoting discussion. One of the main aspects of

the project has been the provision of mechanisms

for encouraging discussion between computer spe-

cialists and design specialists. Seminars and work-

shops have been set up to combine the teaching of
both groups, but there has been a predominance of

either one or the other group at the meetings.

Defining digital typography. The Didot project fo-

cuses on type design, looking at methods for creat-

ing and drawing characters. However, some of the
work at Reading has extended the scope of the pro-

ject to include how we use typefaces in designing

documents. The study of digital typography is there-
fore relevant to, not only those involved in creating

and manipulating fonts, but also users of document

preparation systems.

Users of digital typography

In wishmg to address all users of digital typography,

we therefore need to consider:

computer scientists and technicians,

graphic designers and typographers,

type designers,

teachers and students, and also

amateur designers.

This last group may not fit into either of the two

categories of computer or design specialist, but do

make up a large percentage of users.

Graphic artists and typographers. Having estab-
lished the range of users, we should consider what

material is relevant to each of the groups engaged in

digital typography. Graphic artists and typograph-

ers use the tools of digital typography, and may have

something to say about the development of such
tools, but they are not normally the developers, as

they lack the technical skills. The contribution that

designers can make to developing software was dis-

cussed at a summer school in Lausanne. The nature

of the tools that are being produced should be influ-

enced by the working procedures adopted by design-

ers. For example, designers may have clear ideas as

to what type of work they wish to do on paper, and
what can best be carried out on screen. However,

such a contribution does not necessarily'require that

designers be taught the technical aspects of digital

typography.

Computer specialists.
the developers of the

Computer specialists may be
tools of digital typography,

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Mary Dyson

and also users. However, they may not have the ap-
propriate design knowledge to make best use of the
tools. We therefore need to identify those aspects of
design that are most relevant to their aims. We may
need to dstinguish between what is taught to users
and what is taught to developers and implementors
(cf. Brown and Utting, 1992).

Amateur designers. The large group of users, clas-
sified as amateur designers, are likely to come from
a range of disciplines, but have probably become
users of digital typography through an interest in
computers, rather than design. They may there-
fore be similar to computer specialists, but may have
slightly different objectives in learning about digital
typography.

Approaches to integration

Working together. At a Reading Didot seminar, we
discussed some of the ways in whch computer sci-
entists and designers can work together. Over the
course of Didot seminars, designers have received
information about digital techniques, and computer
specialists have heard about design issues. One of
the more obvious problems is interpreting the 'lan-
guage' of the other discipline. For example, design
concepts are not expressed in the 'normal language'
of computer scientists. We therefore need to ques-
tion how far we should go in teaching another dis-
cipline. It may be most appropriate for computer
scientists to use the tools (with direction from de-
signers) as opposed to designers using the techno-
logy themselves.

Curriculum development. One way to approach
this diversity of needs is to design a curriculum for
digital typography which is sufficiently flexible to
cover a wide range of requirements. The nature of
a generic curriculum is discussed by Dyson (1992),
who argues that the same topics may be relevant
to different disciplines, but the subject matter may
need to be treated differently depending on the back-
ground of the students.

The subjects that could be included in a cur-
riculum for digital typography have been explored
by Andre and Hersch (1992) who concentrate on
the computer science aspect of the subject. They
put forward the argument, which is fundamental
to the Didot project, that digital typography should
not be taught without teachmg classical typography.
Withn the Didot project, t h s is dealt with in terms
of historical and cultural aspects of letterforms and
the fundamentals of letterforms and the design of
type.

Teaching Methods and Material

The Didot project has explored a range of teaching
methods and materials in relation to digital typo-
graphy whch include:

seminars,

workshops,

short courses,

vacation courses, and

tools.

T h s paper briefly describes the full programme of
seminars conducted by Didot partners so far, but
focuses on examples of activities and teaching ma-
terial from Reading. These examples are considered
in terms of their relevance for the various groups of
users of digital typography outlined above.

Programme of seminars. The nature of seminars
has varied, depending on the specialisms of the sem-
inar organisers, and also the country where they
have taken place. The serninar/workshop in Read-
ing explored ways of introducing people to some of
the issues surrounding letterform design and stud-
ied digital techmques alongside traditional methods
of design and manufacture. The summer school in
Lausanne provided a more thorough grounding in
technical matters, combined with the cultural, his-
torical and aesthetic aspects of the subject. The
Base1 seminar built upon the previous seminars and
developed and evaluated educational concepts. The
French seminars were aimed at graphc designers
and provided a means of demonstrating and work-
ing with the new technologies. The workshops of
the Didot works seminar in Hamburg again focused
on digital tools, with the lectures providing a rich
design context.

The seminars in Italy and Greece were some-
what different in nature as they hghlighted the irn-

portant role of education withn their respective
countries. In particular, they raised awareness of
the problems of using the tools of digital typography
without the necessary background knowledge.

Reading seminar. The seminar in Reading with the
title 'Type design: tradition and innovation' involved
exercises in lettering, lectures on historical aspects
of type design, and demonstrations of malung type
by hand (punchcutting, matrixmakmg and type cast-
ing) and by mac lne (IkarusM). Those who attended
were mainly involved in type design, type produc-
tion or education, but there were a few computer
specialists. A seminar/workshop of this nature is
probably most useful for those who have a little
knowledge of type design and wish to specialise.
The computer-oriented participants felt that there

330 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Teaching Digital Typography - the Didot Project

was insufficient innovation (i.e., technology) in the

programme. This comment may have reflected their

own personal views, or may have been a suggestion

as to what would have been more appropriate for
the design-oriented group.

Local workshops. In addition to international sem-

inars, a series of local workshops in Reading have in-

troduced typography to beginners through the three
areas of lettering, traditional handsetting and com-

puters. The main objective of the workshops was to

explore the relationshp between major typograph-

ical variables through practical experience of dif-

ferent techniques and tools. Lettering introduces
students to the influence of the tool on letterforms.

Handsetting allows students to directly manipulate

type and space, an experience whch can then be

translated into the less tangible medium of com-

puter typesetting.
Basic issues of legibility, dealt with in the-

ory classes, were re- examined. The relationships

between choice of typeface, type size, interlin-

ear spacing, line length, setting, hyphenation and
format were explored in a series of exercises using

the computer to set type. The students then evalu-

ated the results of their exercises through conduct-

ing empirical tests.

These activities were aimed at establishing ef-

fective design procedures for digital typography,
and are therefore suitable for all groups of users

except experienced designers. They would be par-

ticularly appropriate for amateur designers.

Short courses. Courses spanning two to three days

are regularly conducted at Reading on the subject of

design issues for desktop publishing. These cover

aspects of document design such as legibility, house
style, heading and cueing devices, and are targeted

at amateur designers.

Some of those who attend are computer-

oriented and this has sometimes led to a greater

interest in the tools themselves, rather than how to
design using the tools. T h s natural tendency to seek

out the areas with which we are most familiar, is one

of the problems we need to overcome in Didot's in-

terdisciplinary teaching. It may also be a warning

that we should not go too far in trying to cross dis-
ciplines.

Vacation courses. Some of the teaching methods

used at Reading in relation to the teachng of his-

torical and cultural aspects of letterforms have been

evaluated as part of the Didot project. Students at-

tend two vacation courses as part of the four year

BA(Hons) in Typography & Graphic Communication.
One of these takes place in Northern Europe and the

other in Italy. These courses abroad provide direct

experience of the material they are learning about

through lectures and seminars in the Department

and aim to stimulate interest in the subjects they
are studying. The evaluations have looked in par-
ticular at working methods, and how useful the stu-
dents perceive these methods to be. Comparisons

have also been made with other forms of teaching,

such as lectures, seminars and practical work. The

questions have evaluated:

the type of activities engaged in on the vacation

courses;

forms of preparation;

sources of information;

methods of learning;

methods of recording information; and

methods of analysis and synthesis.

The results support the use of first hand experience

as a means of learning. The courses help with stu-

dent's understanding of specific issues in theory and

history, as well as providing inspiration for practical
work. There does however, need to be sufficient pre-

paration before the course and a means of consol-

idating what has been taught afterwards, to make

best use of the time spent in observation and ana-
lysis whlst on the course. Although such courses
would be excellent means of stimulating interest in

all groups of users, they are only practical as part of

a more extensive programme of teachng.

Tools. Within the context of the Didot project, spe-

cific tools have been developed as teaching mater-

ial. An interactive program comprised of exercises

in character-hnting techmques has been developed

at EPFL.
As a student project at Reading, a video has

been made based on material from the seminar. The

video explains the process of punchcutting and type

manufacture to people with no knowledge of the

subject.

Also at Reading, a hypertext on the subject of

document preparation systems has been written to
support a series of lectures and is currently be-

ing evaluated. One of the introductory screens is
shown in Figure 1. This tool is useful for design

students as a source of reference material on some

of the technological aspects of the subject (see Fig-

ure 2). However, it could be modified to suit dif-

ferent types of students, or the requirements of dif-

ferent courses. If placed w i t h an interdisciplin-
ary context, computer-oriented students may desire

greater techmcal detail than typography students,

but they may also require more detailed explanation

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Mary Dyson

Introduction

I f this IS your f i r s t use of th ls e le t t ron lc book, you rnlght

How to use
want some i n i t i a l guidance as to how to use i t I f so, c l ick on
the Icon on the l e f t

@
11 you know how i t won,, you can go Straight to the general
introduction This provides an overview of the sublects

Ovrrvlev covered I n detai l In the tu tor la is You then go on t o the
t u t o r i 8 k

i f you w s h , you can go stralght t o the tu tor la is This may
iutrmis take a few moments.

I f you have already used some tutorlals, and w s h to continue R wi th the tu tor ia ls you haven t read c l lck here
ContlOue

Figure 1: An introductory screen of Hypercard on

the subject of document preparation systems.
tutorlals

Tutor ia ls on document preparat ion sys tems

Development
From w i t h i n computer Industry
From w l t h l n publlshlng Industry

Components
narkup systems
Hardware
Sof tware

Tools
Wri t lng

0 Input
Design & composition

Classification

Exl t HyperCard

Figure 2: Contents page showing the tutorials avail-

able.

of design issues. This additional information can be

included at a different level, so that users can call up
the information if they wish (Figure 3). Developing

tools such as these may meet the needs of a range

of users of digital typography.

Conclusions

Digital typography encompasses a diverse range

of specialisms and we must consider the balance

between teaching the core of the subject and de-
veloping and distributing specialist material. The

requirements of specific types of users need to be

clearly defined and mapped onto a range of appro-

priate teaching methods and materials.

References

Andre, J. and Hersch, R. "Teaching digital typo-

graphy", EP-ODD, 5(2), 79 - 89, 1992.

tutorials

Funct~on

rlnP,ra
A very general dlvlsion can be maae in to

tex t processing
graphlcs

s e e - t o m l n n ~ ~ m e m page rnakeup/composlt lon/typesett lng
prepsrarmn F e r n s inrhe
computer mdmlyfor mare

Text processing n be d~v ided i n to *
edit lng o r wo r8 rocess ing

Graphics packages can be for *
paint lng
drawlng

Page makeup can be considered as
a desktop publishing

typeset l ing* CJ

Figure 3: A screen from a tutorial showing that fur-

ther information is available on text processing.

Brown, H. and Utting, I.A. "Teachmg EP to computer
scientists", EP-ODD, 5(2), 91 - 96, 1992.

Dyson, M.C. "The curriculum as a hypertext", EP-

ODD, 5(2), 63 - 72, 1992.

332 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Russian-Speaking User: From Ch-Writer and Ventura Publisher to TEX;

Learning Difficulties

Irina V. Gorbunova
International Laser Center of Moscow State University

Vorob'evy Gory, 119899 Moscow, Russia

Internet: ivg@compnet . msu . su

Why TEX is the Best

Let us start with a brief history of desktop publish-

ing in Russia. Chi-Writer (CW) was the first russified

text processor to enable an author to accomplish
a composition or to prepare a camera-ready copy

of a mathematical text. Based on a WYSIWYG prin-

ciple, t h s program allows the author to work in the

manner he or she was used to: that is, the result
of composition is seen on the screen, which is why

such work is similar to writing on paper. Thus many

authors started worlung with CW.

The problems appear when the author is going

to get a printout of the work. Laser printers, and
cartridges for them, are very expensive in thls coun-

try: moreover, not many organizations and authors

have laser printers. To get a printout, the author
brings the article to a publisher or to any other place

where there is a laser printer, and then sees that the

result is not whart was expected. The reasons are
as follows: (1) differences in fonts used and those

which the publisher possesses; and (2) the same
fonts being tied to different keys. (In CW, each font

is tied to the functional key on the keyboard and has
its number in the fonts list. T h s number coincides

to the number of the functional key. For example,
font number one is tied to the F1 key. The number

of the font can be easily changed by users; in this

case the key to which the font is tied also changes.
Bearing in mind the above, it is clear that there is no

absolute coincidence in the programs modified by

users. As a result, in the print out, the Cyrillic font

may be replaced by the Latin font or the Symbol font

may be replaced by the Greek. It is not very difficult

to restore the order, but you have to know how to

do it, and have experience, time and desire.)

Another problem, caused by the graphical

nature of CW, arises when text whch is prepared
by CW is used in another program. This offers great

difficulties for those who have no special converters.

I am not going to present in detail all the diffi-

culties coming from using CW or explain the differ-

ence between CW and TEX, but I think that even the
problems described above show that T# is better.

Ventura Publisher was the second russified pro-

gram to allow an author to compose a mathemat-

ical text. Ventura Publisher works on the WYSIWYG

principle, but it has become an intermediary stage
on the road to TEX, because of the convenience of

first preparing an input file (ASCII or in a format

of any program compatible with Ventura Publisher)

and then importing it into the program. This way,
working with Ventura Publisher, Russian-speaking

users have first had to get used to working with an

input file prepared by a word processor.

Ventura Publisher itself, like CW, has a large

number of faults from the point of view of poly-
graphcal quality, and in many cases the number of

defects is increased if the keyboarder does not un-
derstand mathematical typography conventions. I

do not want to say that in order to work with TEX it
is not necessary to know the rules of composition

of a mathematical text but in many cases TEX helps

you, knowing the rules, and doing many thmgs auto-
matically.

Bearing in mind all the above we can propose
once again that T@ is much better than CW and Ven-

tura Publisher.

Up until now I have been reviewing the prob-

lems that authors come across working with a math-
ematical text in Russian. However, there are a large

number of the authors who write articles or send

translations of their articles printed in Russian to

foreign publishers. Many of them are asked to pre-

pare their articles in TEX and to send a . t e x file to

the editorial board. Such a requirement forces the
scientists to study TEX and to work with it. In addi-

tion, it is very convenient to send a . t e x file to a for-
eign publisher by e-mail, whch is very important for

Russian authors, due to the fact that our post does

not work properly. Many of them have not worked

with any desktop publishmg system before and are

not used to any system. For me, TEX was the first

program I started working with and, consequently, I
have had no inconvenience based on the custom of

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Irina V. Gorbunova

workmg in a WYSIWYG regime. Thus, those who are

used to working with TEX and then start using any

other program can not only confirm that T g is much
better but can judge that TEX is the best!

Difficulties for Russian-Speaking Users
Learning TEX

One of the main difficulties for Russian-spealung

users in learning TEX is the small number of books on

TEX (and TEX-related software) translated into Rus-

sian. In addition, Russian-speaking users are short
of literature on TEX in English. Sometimes it is im-

possible to get the book needed just for a few days.
To buy the book you need in dollars is impossible be-

cause of the inadmissibly high rate of the dollar to

the rouble (a price of a book converted into roubles
is greater than a month's salary).

Another difficulty, and I think it can also be con-

sidered as one of the main ones, is the absence of
TEX support. To start working with TEX you need
to have an opportunity of solving the problems that
appear with somebody skilled in TEX. To build a

support activity properly, a support person should
know the level of users' education, their experience,

and abilities (Hoover, 1992).

I have spoken with many beginners and heard

that the problems appear at the moment of install-
ation of TEX. Sometimes it is impossible to install
the whole package because of the lack of room on

a disc. For those who do not know the structure of

the package there is a risk of skipping an import-
ant directory. That is why, from the very moment

of installation of TEX, many questions arise and the

user should have an advisor who is able to answer
questions or point to appropriate documentation. In

the near future such support can be partially accom-

plished due to the fact that electronic mail in Russia
is becoming more widespread.

Approximately a year ago, electronic mail was

somethmg very rare and very expensive, especially
for international communication. During the past
year some changes have taken place in this field.

Several non-commercial nets are being used now,

and several organizations (universities, for example)

have sponsors to cover their e-mail expenses. That

is why it i s possible now not only to use e-mail as of-

ten as you need, but to subscribe to teleconferences,
to get information and the necessary materials, and

to get the answers for your questions. The members

of CyrTIJG are discussing the possibility of having a

common electronic archive. On solving t h s problem
it will become possible to share information from
abroad between the members of the group. It is

very important to have such an archive, paying at-
tention to the fact that transmitting the information

inside Russia, even via the commercial nets, is not

very expensive.

In conclusion, I would say that in spite of the dif-

ficulties, TEX is spreading in Russia more and more

widely (the latest CyrrUG conference confirmed this
fact) and that the number of authors, scientists,

and staff members of publication departments in-

terested in TEX increases.

Bibliography

Anita Z. Hoover, "The key to successful support:

knowing your TEX and F&X users", Proceedings

of the 7th EUROTEX Conference, Prague, pp. 71-

85, 1992.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

How to Set Up and Maintain a TEX System

R. Allan Reese
Computer Centre
Hull University
Hull HU6 7RX

UK
Phone: +44 482 465296

Janet: r . a . reeseeuk .ac . h u l l . ucc

Abstract

TEX use is increasing, but TEX suffers from a folklore perception of being hard to

use and aimed at computer programmers. This is partly because of the packaging
and presentation. TEX documentation generally assumes TEX has already been
set up - someone else has written a Local Guide. Compared with commercial

software that is 'load and go', TEX installation seems to expect an unreasonable
level of systems knowledge. T h s is compounded by the lack of a definition of

what would constitute a TEX installation; it is far more than just TEX authentic-
ated by passing the TRIP test. The continuing development and improvement
of TEX-related tools distributed via networks aggravates the situation. The TEX

community must specify the components and the 'current versions' that should

be available in any 'standard' installation if TEX is to be used as a lingua franca
for document transfer. The combination of TUG and CTAN organizations form a

reasonable basis for carrying out t h s function. The paper includes a list of com-

ponents that t h s author has assembled over several years; the next stage would

be to expand this list and make the list generally available.

The problem

There are several papers and distributed notes on

the general theme of 'Getting started with TEX'.

Daneliuk (1993) is a list of TEX-related tutorials.

Childs et al. (1988) or Martin (1990) describe in-
troductory training in the TEX mark-up language.

Doob (1992) is a p l a i n TEX primer, and Warbrick

(1992) and Maltby (1992) are primers to W X . Rahtz

(1992a) is a guide to using (LA)TEX under Unix and

discusses related software to put TEX in context.
However, all new TEX users are referred to their Local

Guide for the mechanics of how to use a system that

is assumed to be available; there is little comparable

help for the first person who fetches TEX to a site.

Rahtz (1992b) provides very brief notes for Unix
systems, but assumes a lot of systems knowledge

and ability on the part of the user if the make files

do not work as intended. Luecking (1993) sumrnar-

izes on email the process and problems of setting

up the widely used IBM PC version emTEX, but does

not cover what should constitute a 'TEX system'. He

writes, "I have assumed that the reader is familiar

with the general idea of a TEX system [and that you]
understand your setup and how to use DOS."

This paper was presented at the Aston confer-

ence as a workshop, whch relieved the author of the

responsibility of providing definitive answers. Most
or all of what it contains may not be new to the

reader, but some of it may be rather shocking since

it may remind you what you have forgotten.

It deals with a topic that I consider irnport-

ant, because unless we can persuade more people
to move from software that is marketed as 'easy

to use' (whether it is or not!), (LA)TEX users run the

risk of being marginalized - being seen as eccent-

ric, pedantic, weird, 'out of their tree'.

The people. The people gathered at a TUG event
will, for the most part, be the frontiersmen (sorry,

persons-but 1'11 stick with the old word and the

image) of TEX. They are also likely to over-represent

academic users who have the benefit of support over

the world-wide Internet. Furthermore, they include

people like myself whose jobs are specifically to eval-
uate, implement and support software for an organ-

ization. We can justify the investment of time play-

ing around - or research as we call it on Sundays.

Many TUG members would describe themselves as

'computer scientists'. When I first obtained TEX 'for

the University of Hull' I was startled to find several

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

R. Allan Reese

copies already on the system, fetched and installed

by computer scientists. But their brief does not re-

quire them to provide services to others.

The frontiersmen are friendly and hospitable
but they may have forgotten the Herculean efforts

they endured to get where they are now. Their latest

discoveries may look like wild flights of fancy to a
newly arrived 'immigrant' used to the pedestrian dis-

ciplines of an office-oriented word processor.

British common law is largely based on what is

expected of the 'reasonable man' (or woman). What
is reasonable to ask of a putative TEX-installer? The

following recent exchange on email with an archive

maintainer is likely to send the vast majority of cur-
rent computer users climbing up the wall, or up the

tree that we vacated:

A user asks, "We've been running TeX 3.0.
I'd Like to get the version 3.14 as on

yrnir.claremont.edu, but the files are a pain

to transfer via ftp"
And gets the reply, "If all you're after is

TeX, all you should need is TEX.WEB and

TEX.VMS-CHANGES, both of which are As-
CII files. . . . Also there and of interest are
VMS-TEX-NOTES.TXTandCOMPILE-TEX.COM.

"Get the WEB and VMS-CHANGES files, then

TANGLE (probably defined as the foreign com-
mand symbol TANGLE : ==$TEX-EXE :TANGLE

since you're running DECUS-TeX) the files,

replying with the appropriate .WEB and

. VMS-CHANGES files, also pointing to TEX. PAS

as the output and TEX. PO0 as the Pool file.
Once done, run Pascal on your TEX . PAS, then

link TEX. O B I and you should have the ex-
ecutable, TEX. EXE. Alternately, this is done

for you in the compile DCL command script.

To finish up, COPY/PROT=W : RE TEX . EXE to

TEX-EXE and you should be done. The VMS-

CHANGES file includes the TEX. CLD file which

is distributed with the DECUS files, so the

change should be transparent."

Let me stress I'm not criticising the work of
archwe maintainers. They do a superb job unpaid,

and are greatly appreciated by many users including

myself. However, TEX may be seen from outside as a

club for computer experts, and advice like the above
will repel more users than it attracts.

The program. TEX represents an attitude to both

typography and computing. It is exciting and in-
novative. It is iconoclastic, dismissing arbitrary re-
strictions that are incidental to either the hardware

or the system in use. For example, in Chapter 4
of Computers in Typesetting (Knuth, 1984), Knuth

writes "This is somethmg that authors and readers
aren't accustomed to, because printers couldn't do

such thngs with traditional lead types." It is there-

fore something of a volte face by Don Knuth to wish

to embalm the TEX program and take it into the af-

terlife unchanged, or at least to ask that its name
shall live for ever and ever. TEX as used is constantly

evolving and developing, and this represents a prob-

lem for anyone who wants to get started.

Knuth's mandate relates only (I think) to the

program source of TEX. Any usable 'TEX' system has

to be built of many tools and components which
are avdable in a variety of forms and from vari-

ous sources. While 'mix and match' gives great
flexibility and power, it also gives uncertainty and

instability. One aspect of 'client-server' computer

systems is the split between the front-end that the

user sees and the processing engine. Papers at this
and previous conferences have described many pre-

processors and integrated front-ends that retain TEX

as the background processor; there seems almost a
fatalism that SGML will be adopted as a document-

description language but that its input will be pro-

cessed into TEX for display.

Most word processors look like ~ a r b i e @ Dolls.
TEX looks like a ~ e c c a n o @ set. The difference is

that the doll is a toy with a limited use, and is heav-

ily promoted because buying the doll leads to buying
clothes and accessories -like boyfriend Ken. Incid-

entally, Barbie is anatomically distorted to hyper-

stimulate human emotional responses -rather like

most software hype. ~ e c c a n o ~ , for those who don't
know it, comes as a kit of metal strips and plates

whch the user bolts together to build models. The

sales pitch is that you are limited only by your ima-
gination and perseverence. You are advised to start

with somethmg easy and warned that you may be-

come an enthusiast.

Once again, I'm not criticizing or complaining; I
am pointing to the appearance and suggesting that

thls attracts a certain type of clientele.

The mission. To put the problem into perspective,

most programs (for personal computers) arrive as

a package of disks and a manual. In the manual

is a page or chapter called 'Installation' and usually
the procedure involves nothing more than putting

'Disk Number 1' in the drive and typing i n s t a l 1.
Some programs even make changes to your system

configuration (I don't like this feature) or indicate
possible optimizations. In contrast, TEX looks llke,

for example,

150+ files for PCs from an archve, most of

which are compressed, packed sets of files. This

336 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Setting up (LA)TEX

includes multiple versions
numerous, very technical,

complex environment and

ables, or

of most programs,

readme files, and

configuration vari-

an archive file for Unix that expands into 3500+

files in a hierarchy of directories that may not

be allowed (by 'Systems') on the target system,

or

the TEX archives themselves, which contain

(June 1993) 26000+ files of all vintages and
provenances.

Whle checlung this paper I found that a program
called i ns ta l 1 has appeared in the emT'X archive; I

have not yet tested this feature.

The TEX community, if it is to thnve, must

provide guidance for two distinct people (though
they might be in one body): the TEX implementor

and the user. Both would benefit from having a
defined canonical or default 'Current-TeX'. (I defer

to Don Knuth on the use of the trademark.) Any-

one wanting TEX should be able to get - easily - t h s
definition and obtain the software in a form where it

installs as easily as any other product. That is, they

don't need to go to several sources, look for FAQs

round the world, decypher cryptic in-jokes or take a

course in systems programming.

In current (perhaps just going unfashionable)

jargon, fellow TjXies, you have a marketing and

image problem.

Moving to a solution

For an individual user, needing one copy of the soft-

ware, I have no hesitation in recommending they go
to a commercial supplier for a TEX package. That's

how I got started. The first TEX I used was Tur-

b o ~ @ @ and that came as a set of disks and a book-
let. Nevertheless, there was considerable room for

improvement to match the 'professional', i.e., slick,

appearance of other software. Whether the product
can be made sufficiently appealing to a mass audi-

ence is a commercial decision for the companies.

The corporate user, especially in the impover-

ished academic setting, has a greater problem. Com-

mercial licences for the packaging make TEX an ex-

pense comparable with other word processing soft-
ware. Advertising and peer-group pressure will in-

cline the na'ive (it's compulsory to include this word

in any TEX document) users towards to most palat-

able at first sight. Academic software-support staff,

unless they are inspired to claw through the under-

growth and fight up the rapids to join the frontiers-

men, need far more help in installing the software

and writing the mythcal Local Gulde than is cur-

rently available.

The user group, and especially the management

committee, has a clear r61e to define the 'Current-
TeX' standard and to keep an eye on developments

so that the standard can be amended or exten-

ded by definitive statements, rather than by unco-

ordinated natural selection. As a start, tlus would

allow archives to be divided in a stable kernel and a
seething caldron of experimentation where files can

be added and deleted in contrast to the current ever

accumulating museum of endeavour.

The announcement of the CTAN - the Compre-
hensive TEX Archive Network (Greenwade, 1993) -

at the Aston conference suggests that this is where

'Current-TeX' should be stored. From conference

discussions it appears that this should be classified
in at least two dimensions:

as a series of workbenches with appropriate
tools - for authors, editors, compositors, style

designers, font designers, systems support, etc.

as a set of levels - entry (absolutely required),

advanced, expert

As a first stage the standard should be defined in

terms of the products and versions that should be

available at all installations. This information would

be a single document or file. The next step would be
to expand this list in terms of actual filenames for

particular implementations. This could be done by

setting up actual directories with copies of files, but

more probably by storing the list of filenames as a

document. Many text files would be common to all
implementations, while executable binaries would

be unique. There is the small but important point

of ensuring that files that constitute 'Current-TeX'

should not be deleted or changed except deliberately
and in concert with changes to the filelist files.

A 'Current-TeX' document would assist site sup-

port staff like myself or commercial enterprises who

want to sell T'X with 'added value'. At present,

the contents do not seem to have changed since
The T~Xbook and The b T g User Guide were writ-

ten-around 1984. Is the 'new LATEX' (in archives

as l a t e x . tex dated 25 March 1992) now the stand-

ard? It's required for building the NFSS (Mittelbach,

1990) -is that now standard?

Defining a kernel

I am not here to prescribe. The following list

was compiled from several years of supporting a

generally-used system and from reading e-mail dis-

cussions. The TEX community as a whole must define
what should be included. I'll start the process with

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

R. Allan Reese

a list of items, an indication of the files involved and

a comment on why they should or should not be in-

cluded. I've used DOS filenames since the extension

codes (. tex, . exe, etc.) conveniently distinguish the

type of files.
In some areas, e.g., editors, it is clear that

'Current-TeX' can specify that there must be an ed-
itor to allow users to manipulate ASCII files. The

CTAN can make public domain programs available,

but we cannot prescribe which the user will choose.

TEX

- t e x . exe

- plain.fmt

- t e x . poo

TEX as supplied is so overwhelming that it's hard

to relate this to the single program described in

The T~Xbook. For most widely-used machines,

it would not be hard to maintain a single ex-
ecutable file that needs only copying and run-

ning. Barring dramatic problems, this could be
updated annually. On the 'level of user' scale,

I suggest that the great majority of users will

want only the executables, in a form that they
can copy and run. Reading and changing the
source code is a mark of being 'expert'. BTW:

I've never read T@, the Program (Knuth, 1986).

I was recently asked, "When the archve

people talk about TEX 3.1, 3.14, . . . , etc., does

this refer to changes in the . EXE program or the
. FMT or both?" I confessed that I didn't know.

(I think it covers both, but even when changes

are made only to t ex . exe, it is necessary to re-
process pl ai n . t ex - pl ai n . fmt.)

In several years of using TEX, I've never had

to make any changes to the . PO0 file, nor have I

heard of anyone doing so. Is t h s a neglected fa-
cility for enhancing one's TEX, or a red-herring?

LATEX

- 1 p la in . fmt, incorporating

1. 1p la in . t ex

2. l f o n t s . t ex

3. 1a tex . tex

4. hyphen. t e x (via 1 hyphen. tex)

- Standard styles:
book (book. s ty , bklO. sty),

report, article, letter, . . .
- Many options:

page sizes (with samples for para-
meter names and values), mu1 t i col umn,
f ancyheadi ngs (should be the default),

marginal notes, line numbering, etc.

- Seminar (let's scrap Sm$)

It took me a long time to realize the relation-
ship between 1 p la in . t ex and 1 atex .tex. I

still don't know where to look up such inform-

ation. The layered design of LATEX (and flaws in

same) were discussed at a meeting of UKTUG in
Oxford (February 1993). It would be silly to pre-

empt the WX 3 project, but there may be other

styles that are widely enough used to be 'can-

onized'.

As far as I know, LATEX for most systems is

still distributed with what is now called the 'old

format', and each user has to rebuild the . fmt
file to the 'new' LATEX dated 25 March 1992 in
archives. This is a major potential for problems

and inability to exchange documents freely. The
ETEX User Guide (Lamport, 1986) has a dis-
claimer on the publisher's page, "Any discrep-

ancy between this description and the behavior

of this or any later release of Version 2.09 is

an error." Ah, but in the documentation or the

program?

I t hnk any supporter of a TEX system has to be

able to build a format using i ni t ex (see below).

What should they then do to verify that the new
format is conformant? We can assume that they

wdl not take kmdly to the suggestion of running

the T R I P test.

Could the font size options be parameter-

ized? Thls is more a question for the IF&X 3 pro-

ject, but the increasing use of arbitrarily scal-

able fonts (in Postscript) makes TEX'S few fixed

sizes look old fashoned.

The standard paper size options should cover
at least the range offered in DVIPS, and should
probably incorporate 'best practice'. For ex-

ample, I'd welcome some advice on good page

designs for using A4 paper.

Writer's tools

- Simple ASCII editor

- TEX-aware editor (e.g., emacs, TE -but

without the crashes described below)

- Spell checker

- TEX-aware syntax checker

- Word count and other 'editor's tools'

We know TEX is not a word processor, but it is

becoming increasingly difficult to buy a simple
text editor that is not a word processor. This

unfortunately is a double disincentive for many

users to consider TEX, firstly as the word pro-

cessor apparently does what they want and

secondly because you have to actively avoid
word processor features. You generally have

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

Setting up (LAITEX

to take special steps to save WP output as
simple AscIr.

TUG could take steps to encourage market-
ing of commercial and other editors. I know it
already does but I get the impression that the
typical active TUG member is happy with an en-
vironment as complex as emacs, whch would
have most of my university users scrabbling
again up that tree. TUG endorsement would
add some official weight to complaints such as
the two below.

During the Aston conference the editor redi t
became available on the CTAN. T h s looks at-
tractive but the version available was only partly
translated from German. This was actually use-
ful, as running a German editor made it easier
(as anon German-speaker) to focus on the struc-
ture and appearance.

The amspell (no connection with A&) pro-
gram by Erik Frambach et al. (Frambach, 1992)
is a public domain spell checker.

The TeXshell program by Jiirgen Schlegel-
milch (1993) provides a uniform interface to
the various components of a TEX system on a
PC. It still requires the local implementor to un-
derstand how to integrate each component into
the whole.

Two recent problems that have involved me
personally in t h s area have been:

1. the TE editor that can be obtained from
archives completely hangs our PCs if told
to edit a file greater than 60K. I have not
been able to find support or the source of
the program

2. I have been promoting the use of Correct
Grammar (CG) as a prompt to encourage
thinking about writing. The program is

not TEX-aware and when I contacted the
vendors I was told there were no plans to
add this feature.

Tools to build a format file - e.g., for alternative
languages

The ten and a halfth commandment reads, "Ths
is the plain TeX format . . . And don't modify the
file under any circumstances." I put it as ten and
a halfth because the better known eleventh com-
mandment takes precedence. The most obvious
area where people seem to want to override the
contents of p l ai n is in font allocation, and in
adapting TEX to non-American languages. These
are both areas where the average user does not

want to do the spade-work, but would appreci-
ate being able to be supplied with either simple

instructions or, best of all, alternative format
files for immediate use. The German TEX sup-
plied with ernT~X is perhaps a model for this.
There is a TUG worlung group loolung at lan-
guage problems: perhaps formats for different
languages should form part of 'Current-TeX',
with English being just one amongst many.

Fonts - as sets of characters

- TEX and LATEX: Possibly the most FFAQ

on fonts is, "Where is 1 ci rc l elO?" TEX
fonts are currently in a state of flux caused
by the informal nature of TEX evolution.
TUG members assume that the DC fonts
are now 'standard'; TEX users outside TUG

probably would ask, "What's DC?" At As-
ton it was clear that the only fonts that
could reliably be expected in a currently
'standard' installation are those defined by
Knuth (1984) and Lamport (1986).

- d3MSFonts/:

Even those not writing mathematics may
require extra symbols. The mSFon t s /
provide some 200 symbols not in the
(E)TEX sequences. I was made aware of
this when a student asked for the three-
dot 'therefore' symbol.

- NFSS: As with DC, inside TUG and among
users attached to the network and able to
download from archves, NFSS is now the
standard. Elsewhere?

- Viewing tools: We need to be able to
look at and to interrogate fonts, to have a
simple way of searching a set of font files
for a particular glyph by name. There are
t e s t f o n t and a similar macro by Borde
(Borde, 1992), but that's it.

- Tools for converting fonts
(e.g., Adobe Type 1 - TEX).

Fonts - as system files

.TFM, * . PK, * .VF

METRFONT is almost certainly needed to avoid
trying to store every font at every size. The

local supporter maybe only needs to know how
to run METAFONT with supplied input, how to
handle the results and where to put the output.

Users are confused and intrigued by the rela-
tionshp between the printer resolution, design
size and character magnification, and the bit-
map file. I had to attend a TUG workshop to
be clear on this. The documentation on vir-
tual fonts is virtually restricted to the sources
of VPtoVF and VFtoVP. The possibility of .AFM

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 339

R. Allan Reese

and character mapping fonts for dob be@ fonts

also leaves the user bemused.

emT~X's system for packing font bitmaps into

library files is commendable, but this leads to

yet another extension (. F L I) and the need for
tools to maintain libraries. A standard for port-

ing fonts would be useful; as binary files they

are a pain.

Printer driver

There is a lack of information about printer

modes, but perhaps t h s is very technical and

esoteric. However, it would be helpful to see
some examples of how much (or little) improve-

ment can be achieved by tweaking the para-

meters. I have installed Mattes' dvi dot and
Rokiclu's dvi ps (Rokiclu, 1993).

Previewer

A fast and versatile screen previewer can make

TEX competitive with any WYSIWYG DTP system.

Many people (meaning my own prejudice but
reinforced by numerous discussions) have in-

deed commented that immediate design on the

screen is less desirable because users who are

not professional designers will both see what
they expect and accept what they are offered.

dvi s c r , dvi screen and xdvi are all very good.

PostScript

PostScript appears to be a world standard for

page description as well as a printer driver. At
least that's the impression I get, though it's hard

to be objective. Some of my colleagues have
suggested buying non-Postscript laser printers,

and cite HPGL as an equally valid standard.
However, in the TEX world, PostScript and Adobe

font representations seem a centre of interest.

I make heavy use of:

- PSNFSS

- PStricks

(through semi nar . s ty , not as direct calls)

- Graphics inclusion

where bbfi g, the PostScript code that checks

Boundi ngBox values is an indispensible tool. I

have installed on our system all of the epsf

macros that come with dvips (Rokiclu, 1993),
the BoxedEPSF macros (Siebenmann, 1991) and

the p s f i g macros (Darrell, 1987). None is defin-
itive or clearly best.

- PostScript previewer

i.e., Ghostscript - I use it heady on DOS and
UNIX

Page manipulating tools

- dvi manipulation

- PostScript manipulation

dvi dvi, dvi s e l e c t , dvi book and their ps equi-

valents

Formats - on top of pl a i n TEX

- Eplain. Expanded Plain TEX (Berry, 1993).
Provides tools for cross-referencing and

indexing - i.e., mX-like facilities without

the imposed styles.

- Newsletr: plain TEX macros for multi-

column working (Goatley, 199 1).

- TEX by Example (Borde, 1992).

- ANS-TEX: American Mathematical Society
style (Spivak, 1986). This is an alternat-
ive to plain, so A~S-LATEX/ may now be

preferred.

- texinfo: Gnu documentation format.
Apart from being a format in its own right,
this is a stepping stone to a wealth of other

excellent software, some of which is TEX-

related.

Formats - on top of WX

- docstrip: Another TUG de facto standard,

for the distribution of 'documented' t?@X

styles. George Greenwade describes it (in

email, 1993) as "Literate programming for

,,X."

- 3lmS-mX/: American Mathematical Soci-

ety options which is an extension standard

LATEX. Requires NFSS.

Easy options for verbatim file insertion, inser-

tion of extracts from text files, etc.

Pre- and post-processing tools

- Bibliographic tools: BIBTEX and Bb (Alex-

ander, 1989)

- Indexing: MakeIndex

- Listing: specific types of source docu-

ments (e.g., c2latex)

Whither?

Preparing t h s review has reminded me how many

sources have been tapped to create the TEX system I

currently maintain at the University of Hull. Thanks
to the many people who have helped me, directly or

indirectly.

T h s paper is an invitation and a challenge to

comment to me, to TUG or to the wider TEX com-

munity. Even the isolated user with a personal copy

of TEX will at some time want to send a document to

another TEX user or will want to upgrade their sys-
tem. Either of these events will cause unnecessary
anguish if they are aiming at a wobbly target.

340 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

Setting up (E)TEX

Another necessary aspect of 'Current-TeX' will

be consistent and accessible documentation. One
way forward will be to gather Local Guides from

many sites, to compare what is made available and

how it is accessed. It should be a fair assumption

that Local Guides are themselves written in (LAITEX.

If you have written a document, please deposit a
copy with the CTAN.

What's an archive?

The provisional recommendations here contain sev-

eral items that are commonly distributed through

the TEX worldwide archve network. These are then

retrieved in their instantaneous incarnation by file

transfer or email. If the 'Current-TeX' concept is
taken up by TUG, t h s is not a satisfactory way of

providing a consistent system for standard sites.

From discussions at Aston, it seems that those who

maintain archves are sympathetic to the views ex-
pressed in this paper. Various technical methods for

keeping archives internally consistent were sugges-

ted and will be further discussed.

Bibliography

Alexander, James C. "?ib A TgY Bibliographc Pre-

processor. Version 2.2." Public domain software

available from TEX archves. 1989.

American Mathematical Society. " d s - l Q X / Ver-

sion 1.0 User's Guide." 1990.

Berry, Karl. "Expanded Plain TEX - Version 2.3."

Public domain software available from TEX

archives. March 1993.

Borde, Arvind. T@ by Example: A B e g i ~ e r ' ~ Guide.

Academic Press, 1992.

Childs, Bart, et al. "Syllabi for TEX and METAFONT

Courses." T m q u e s 7, Pages 117-128, 1988.

Daneliuk, Tim. "List of TEX-Related Tutorials as

of 05.18.93." email available from i n f o -

texeshsu. edu, 1993.

Darrell, Trevor. " p s f i g Version 1.8." Public domain

software available from TEX archives, 1987.

Doob, Michael. Gentle Introduction to TEX. Public do-

main document available from TEX archives, or

printed form from the American Mathematical

Society, 1992.

Frarnbach, Erik, et al. "amspell-Version 2.03."

Public domain software available from TEX
archives, 1992.

Greenwade, G. "The Comprehensive TEX Archive Net-

work." TUGboat 14(3), in press, 1993.

Goatley, Hunter. "NEWSLETR - p l a i n TEX Macros for
Newsletters." Public domain software available

from TEX archives, 1991.

Knuth, Donald E. The T~Xbook. Volume A in Com-
puters and Typesetting. Reading, Mass.: Ad-

dison-Wesley, 1984.

Knuth, Donald E. T#, the Program. Volume B in Com-
puters and Typesetting. Reading, Mass.: Ad-

dison-Wesley, 1986.

Lamport, L. BTEX: A Document Preparation System.

Reading, Mass.: Addison-Wesley, 1986.

Luecking, Don. "Setting up emTEX." Information file
available from TEX archves, 1993.

Maltby, Gavin. An Introduction to T g and Friends.
l b l i c domain document available from TEX
archives, 1992.

Martin, C. R. "TEX for T~Xnical Typists." TUGboat 11

No 3, Pages 425-428, 1990.

Mattes, Eberhardt. "emTEX." Public domain docu-

ment available from TEX archves, 1993.

Mittelbach, Frank, and Rainer Schopf. "The New Font
Family Selection." boat 11 No 1, 1990.

Rahtz, Sebastian. "A E Q X Survival Guide." Notes
distributed with Sun Sparc implementation of

TEX, 1992a.

Rahtz, Sebastian. "System Guide for Setting Up TEX
on a Sparc." Notes distributed with Sun Sparc

implementation of TEX, 1992b.

Rokich, Tomas. "DVIPS 5.519" Public domain soft-
ware available from TEX archives, 1993.

Schlegelmilch, Jiirgen. "TEXShell -Version 2.5.2."
Public domain software available from TEX

archives, May 1993.

Siebenmann, Laurent, "BoxedEPSF.TEX." Public do-
main software available from TEX archves, May

1991.

Spivak, Michael. The Joy o f T@. Addison-Wes-

ley, 1986.

Warbrick, Jon. "Essential LATEX." Public domain doc-

ument available from TEX archives, 1992.

Van Zandt, Timothy. "PSTricks -Postscript Macros

for Generic TEX." Public domain software avail-

able from TEX archives, 1992.

Van Zandt, Timothy. "seminar , s t y -A LATEX Style
for Slides and Notes." Public domain software

available from TEX archives, 1992.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Comprehensive TEX Archve Network (CTAN)

George D. Greenwade
Department of Economics and Business Analysis

College of Business Administration

Sam Houston State University

Huntsville, TX, USA 77341-21 18

Voice: (409) 294-1265

FAX: (409) 294-3612

Internet: bed-gdg@SHSU. edu

Abstract

T h s paper outlines the concept, development, and use of the Comprehensive
TEX Archive Network (CTAN) - a network-accessible archve for files related to
the TEX family of document processing. The CTAN is a coordinated effort among
consenting well-known archve sites which provides quick identification and
retrieval files in a consistent manner from hosts on different continents, thereby
reducing overall network load and increasing speed of retrieval. Moreover, it
provides users with a parallel archive structure between hosts with holdings
whch are generally synchronized to w i t h 30 hours of one another. This is
achieved by routinely mirroring one another's holdings, as well as mirroring
other archves to maintain an up-to-date collection of files.

Why a Comprehensive TEX Archive
Network?

Since the inception of publicly-accessible network-
based archves, TEX and its related packages, macros,
and utilities have been available for retrieval by
users via any number of techniques. The combina-
tion of the growth of the Internet in recent years, the
growth of publicly-accessible network-based archive
sites, and the growth in the number of files asso-
ciated with TEX and it's affiliated packages and
programs, created a rather overwhelming number
of files for users with network connections to sort
through. In terms of "overwhelming," the number
of files available has been a significant boost for
users; however, in these same terms, the number
of different versions available, their precise location
on a given archive host, the user interface avdable
to access these files, and the ability to efficiently
identify the various pieces required to make the var-
ious iterations of TEX and its relatives work properly
has evolved to be a non-trivial task.

In recognition of these problems, the then-
newly-created Technical Council of the TEX Users
Group formed a T e c h c a l Working Group on TEX
Archive Guidelines (officially WG-92-05; informally
referred to as TWG-TAG) in the latter months of

1992, with the author as its Chair.' While a
variety of issues related to archving have been
discussed (and broader guidelines, per se, will in all
likelihood be forthcoming), the concept of creating a
systematically coordinated family of network-based
archve sites was tacitly agreed upon as a mechanism
for verifying that the ideas under discussion were
workable. Also, t h s approach was viewed as a
mechanism for creating a more efficient design,
both theoretically and practically, to meet the needs
of the worldwide TEX community.

General Consensus Notes From WG-TAG. Ger-
mane to the development of a set of archves in lieu
of a "hard and fast" set of guidelines for propagation
to other hosts were the following concerns:

I would like to take this opportunity to formally
recognize the members of t h s Working Group
and publicly thank them for their efforts on any
number of topics whch we have dealt with. These
individuals are, in alphabetical order: Nelson Beebe,
Barbara Beeton, Karl Berry, Johannes L. Braams,
David Carlisle, Michael J. Ferguson, Alan J. Hoenig,
Don Hosek, David M. Jones, Pierre MacKay, David
Osborne, Philip Taylor, Jon Radel, Sebastian Rahtz,
Rainer Schoepf, Joachlm Schrod, and Elizabeth
Tachkawa.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Comprehensive TEX Archve Network (CTAN)

Existing archive hosts very likely have chosen Genesis of the Design
and utilize a structure which is politically and
practically acceptable for their site.
While the concept of the Internet's File Trans-
fer Protocol (ftp) for a user interface was on
everyone's mind, access via alternate means
(primarily electronic mail and hard media) had
to be considered.
Very few hosts on the network possess a
comprehensive archve of TEX-related materials;
thus, a design guideline whch includes all
dimensions of TEX may not be proper for a
specialized archive.
Even if a set of guidelines were developed,
there is no way to ensure that every site
which possesses some aspect of TEX in its
archve would follow them since archves are a
function of local resources, support, and needs
more than "network" demands.
If a workable demonstration of the guidelines
existed, more sites may voluntarily elect to
follow the ultimate guidelines.
No single site on the network possessed a
canonical listing, much less collection, of the
latest relevant files available; therefore, any
guidelines developed would be hypothetical
more than worlung.
It is necessary to make the structure as flexible
as possible, while at the same time ensuring
that files may be easily located by users via
some consistent and logical design.
As much as foreseeably possible, the structure
should be extensible into evolving network
retrieval and browsing technologies, such as
Gopher, Mosaic, and other developing utilities.
It is essential that the archives support users
from the variety of platforms under which TEX
is available; while a given platform may be
used for the archives themselves, it should not
impose problems on any other platform which
a user may wish to ultimately use the files on.
At least initially, the concern was to provide
a reliable archving directory herarchy from
w i t h the project, as opposed to a production
system h e r a r ~ h y . ~

Prior to defining the CTAN directory structure, ex-
tensive discussion was undertaken by TWG-TAG
regarding the optimal directory hierarchy. Com-
pared for use were the herarchical design used
on most ftp-accessible hosts now possessing a TEX
archive and the flat design used by a number of
mail-oriented hosts. For brevity's sake, allow it
to be said that the hierarchcal design was cho-
sen. Once this decision was made, comparisons
of existing archves were undertaken, primarily
focusing on the holdings of three major sites-
Stuttgart University's f t p . uni - s t u t t g a r t . de, As-
ton University's TeX. ac . u k, and Claremont Col-
lege's ymi r . cl aremont . edu. The end result is
a hybrid of the three directory structures, focus-
ing on top-level directories whch are somewhat
mnemonically-based directory names at t h s level
which, at least in the author's view, is pleasing.

The structure is adequately diverse so that dvi-
related files (such as device drivers, dvi to output
programs, and dvi viewers) are distinctly different
from macros, and that macros are adequately cate-
gorized into the appropriate flavor of TEX for which
they are intended. The top-level directory herarchy
is presented in Appendix A.

Conceptually, every file in the archve fits into
one branch of t h s directory herarchy (albeit the
directory mutually agreed to by the maintainers
of the hosts involved in this project). Where a
file conceptually fits into more than one directory,
efforts are made to ensure that the file properly
appears where it should.

Coincidences of Consequence. A critical dimen-
sion of t h s project was its timing. Two hosts were
new machines; therefore, they were easily designed
into whatever structure was agreed to. The main
coincidences whch aided the success of t h s project
were:

Sebastian Rahtz, who was just beginning to
put together the Aston "daughter" archve at
f t p . t ex . ac. uk , began utilizing the directory
design by following the very rough outline of
the preliminary structure. Malung the struc-
ture operational was a significant factor in
more than a few subsequent decisions as it
illustrated, in a close-to-production environ-
ment, the strengths and weaknesses of the

Please note that the concerns above are those then-tentative hierarchy.
perceived b y the author as the majority opinion and Sam Houston State University was just in-
are not necessarily those of the TWG-TAG, nor are stalling its first Unix-based host and learn-
they necessarily those of any one given member of ing its ihosyncrasies; however, its use as an
the TWG-TAG.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

George D. Greenwade

archive host was established soon after its in-

stallation. This was a preferable choice for an

archive host over SHSU's more established ftp
host, Niord . SHSU .edu, as it ran a compara-

ble software to the other two hosts, and was

configurable for use as a mirror.

David M. Jones had just released the first ver-

sion of his index of TEX and ETEX macros,

providing the TWG-T.4G with a relatively com-

prehensive listing of files, their authoritative
location, current version, and other critical

information.

Joachirn Schrod's mirroring software for Unix
hosts (which the CTAN hosts utilize) was being

upgraded. Joachim was able to quickly address

a few specific problems resulting from its

massive use.
Nelson Beebe was developing a few new ex-

tensions to the ftp server software which was

adopted for use. Significant contributions were

his definitions which allow users to retrieve
recursive ZIP and ZOO archves of directory

holdings.

A bug was located in the adopted ftp server
software. This led to the new release of the ftp

server software, resulting in a much nicer in-

terface, easier management, and more generic
installation as compared to prior versions. In

essence, while each host is unique in archtec-

ture, the configurations are virtually parallel, as

are most features available to users.
Karl Berry further extended h s somewhat stan-

dardized Unix TEX directories and installation.

WMe this has yet to play a significant role in
design, it provides significant future extensions

to the services of the CTAN.

The University of Minnesota upgraded the facil-
ities and functions of its Gopher software. This

interface now serves as an alternative access

method to the CTAN at Aston and SHSU.

Significant enhancements to the Z I P utilities by
the Info-ZIP team were released. T h s is a major

item of concern as it allows for a platform-

independent mechanism for the archval of

files held within the CTAN collection. In
essence, when combined with Nelson Beebe's

extensions, this feature allows users on virtu-

ally any platform to retrieve recursive directory

holdings, then convert them to the operating

system specific needs which they confront.

By no means is this a complete listing of

all coincidences of consequence to the project -

suffice it to say that without a number of apparently

disjoint and unrelated projects coming to fruition

at approximately the same time, this project would

likely still be in its planning stages.

The CTAN Hosts

By now, you're very likely aslung where these hosts
are on the network. The present CTAN hosts and

their root CTAN directories are:

f t p . un i - s t u t t g a r t . de /pub/tex/

f t p . t e x . a c . u k /pub/archive/

f tp .shsu.edu / tex -a rch ive /

Based at Stuttgart University germ an^),^ Aston Uni-

versity (EnglandL4 and Sam Houston State University

(United state^),^ respectively.
Whde the designs of the consulted archives

were largely congruent, there were some modifi-
cations when compared to all existing archives.
Rainier Schoepf, TEX archve manager at Stuttgart's

f t p . un i - s t u t t g a r t . de, was fully agreeable to

modifying the directory structure there based on

the recommendations which were developed. While
it was clear that the changes would impose short

run problems for users of his collection and po-

tential problems in the management of his site's

mirroring of packages, he was in agreement that
the long term benefits to the TEX community of a

well-known and specified structure outweighed any

short term impact. Also, as the other two hosts
involved were new to the network, being able to

plan for the inclusion of an existing large and active

archive from the start was a real benefit, especially

since it had a mirroring structure already in place
and the site was mirrorable by other sites.

In addition to the administration of the insti-

tution, thanks are extended to DANTE, the German

speaking TEX Users Group, for their archival support
and leadership role in maintaining this archve.

In addition to the administration of the institu-

tion, thanks are extended to the UK TEX Users Group

for their archival support and leadership role in the

development of their original archive, as well as in
the creation and development of t h s new archve

host.

In addition to the administration of the insti-

tution, thanks are extended to SHSU's Computer

Services Division, which has been more than forth-

coming in support and access as this archive has

evolved. Additionally (and especially), thanks are
extended to SHSU's College of Business Administra-

tion for its continued interest in and support of t h s

project.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Comprehensive TEX Archve Network (CTAN)

What's Available

As noted in the name selected for these hosts, the

Comprehensive TEX Archive Network, the collections

available are about as comprehensive and timely

as humanly possible. Do these hosts have "every-

thing"? The truthful answer is that they probably

do not and probably never will- but they are and

will be about as comprehensive a collection as can
be arranged. As sites possessing relevant files and

packages are identified, one of the CTAN hosts will

include them in its mirroring passes; from there,

the files will then propagate to the other CTAN

hosts. Presently, there are about 790 megabytes of
files available in the / tex -a rch ive / directory tree

on f t p . shsu. edu. It would be expected that the

collections in the TEX archive area on the other two

hosts would be virtually identical.

How It Is Achieved. The synchronization between

hosts is handled within a "mirroring" program

whereby files on one host are propagated to the

other hosts of the CTAN. The variant of mirroring
used by the CTAN hosts is a modification of a family

of per1 scripts written by Joachim S c h r ~ d . ~

Conceptually, the process entails three major

points. First, hosts where files are authoritatively

available for retrieval are mirrored inbound by a

selected CTAN host. This CTAN host locates these

files in a pre-specified area of the collection. Second,
users may contribute files to a given CTAN host by

uploading their files into an "incoming" area on

any given CTAN host. From there, the local CTAN

administrator moves these contributions into the
CTAN hierarchy. Finally, the CTAN hosts mirror one

another on a routine basis to collect all new files

whch have entered the collection at the mirrored

host. In all, about one gigabit of files are referenced
daily by the mirroring processes in order to maintain

accuracy, timeliness, and correctness of holdings.

Existing User Interfaces

As noted throughout this paper, the Internet's File

Transfer Protocol (ftp) is supported at the moment

for a user interface. There are three other interfaces

which should be recognized - Gopher, mail, and

hard copy - as these are important to users which
prefer to utilize them.

The program itself is available in the arch ive -

t o o l s/mi r r o r / directory of the CTAN hosts.

ftp. The ftp interface utilized by each CTW host
is the "wuarchve f t p d " program.' In addition to

the normal ftp commands a user would expect,

these hosts support a variety of additional useful

functions, such as locating a file, creating Z I P ,

ZOO, and Unix t a r archives on-the-fly, automatic

compression of files on-the-fly, and a few other
features. As these features may be modified, the
best policy is to consult any files named README in

the default directory at login.

Gopher. Two of the CTAN hosts, f t p . t e x . ac. uk

and f t p . shsu. edu are configured for Gopher ac-

cess. The Internet Gopher, developed by the Univer-
sity of Minnesota, provides users with a menu-driven
interface for transactions. Users may view and re-

trieve files in a fashion somewhat more friendly
than ftp. Also, the Gopher menus presented do
not necessarily represent files actually available at a

site; instead, the client/server relationshp utilized

allows for servers to point to information stored

elsewhere, whch users are automatically connected

to by simply selecting a menu entry.8
Pointing the Gopher client directly to the Go-

pher server on f t p . t e x . ac . uk is the preferred

method for access to the Aston CTAN archve; Go-

phering to SHSU's "front door" Gopher server on

Ni o rd . SHSU . edu is the preferred method to access
SHSU's CTAN archive. In addition to the archves

themselves, a variety of TEX-related files and ser-
vices are available on each host. Sample menus
from each are provided in Appendix B.

Mail. At the moment, no agreed-to mail interface

has been installed on all hosts. The f t p m a i l

program will be used and t h s will be documented

better in a future article scheduled for TEX and TUG
News discussing user interfaces to the CTAN hosts.g

Hard Copy. Sebastian Rahtz has already made ar-

rangements and compiled a hard copy of the CTAN

archves for CD-ROM distribution. The distribution

' T h s program is available in the directory

a rch i ve - t oo l s / f tpd/mi r r o r / on the CTAN hosts.

It is the classic ftp server/daemon utilized by Wash-

ington University in St. Louis, Missouri (USA) for

their massive collection of files.

Gopher clients are available for a wide variety of
platforms. Sources for most platforms are available

in the directory arch ive- too ls /gopher / on the

CTAN hosts.

Sources for the f t p m a i l service are available
in the directory a rch i ve - t oo l s / f tpmai 1 / on the

CTAN hosts.

TUGboat, Volume 14 (1993), No. 3 - Proceedings of the 1993 Annual Meeting

George D. Greenwade

is available from Prime Time Freeware. The first
version of thls file set is already available and it is
to be routinely updated to reflect changes made to
the archives.

Aspects for Authors

While the process of mirroring and uploading pro-
vides a rough and ready mechanism for acheving
the reliability of the CTAN, authors should be aware
of a few dimensions. At the moment, no specific
guidelines exist on these topics, so please view the
following as personal views which will, in time, be
discussed.

File Headers and Checksurns. Nelson Beebe has
developed a package written as an Emacs Lisp file
which creates "standardized" file headers.1° These
headers, while clearly consuming space w i t h the
archve, provide valuable information which users
and archive maintainers may refer to quickly. More-
over, these file headers provide valuable indexing
information which may be blended into existing
indices, such as David Jones' heroic effort. An
example file header taken from a contributed LATEX
style option is provided in Appendix C.

Optionally included in these headers is a
"checksum" option, whch is of significant bene-
fit whenever files are transferred electronically to
verify correctness. The preferred is Robert Solovay's
CWEB-based program which, with the assistance of
Nelson Beebe, has been ported to a number of
operating systems.ll

Location of Files. It would behoove authors who
maintain authoritative file set(s) on network hosts
which are ftp-accessible to contact me so that
arrangements may be made to mirror these files
into the CTAN collection. Without a doubt, the
ability to mirror files into the CTAN hierarchy is the
least painful and most efficient method available as
human intervention arises mainly in the review of
the logs of the mirroring session. If an authoritative
host is identified, its holdings will automatically
be included when the site is referenced. In this
way, additional copying to additional hosts for
propagation wdl not be needed. Moreover, you
wdl ensure that the latest versions are available for
public consumption.

This package is available in the archive-
tool s / f i 1 ehdr/ directory of the CTAN hosts.

l1 This package is available in the archive-
tool s/checksum/ directory of the CTAN hosts.

Directory Suggestions. Although it is well-specified,
no official designation of the CTAN directory struc-
ture now exists. However, it is advisable for
maintainers of authoritative files and packages to
consider the utilization of the CTAN hierarchy, if at
all possible. In this manner, the author will be able
to envision how the archive is laid out for the end
user. Also, if this structure is used, especially on
Unix-based hosts, proper h k a g e to related files may
be used. At the moment, one of the most wasteful
uses of the CTAN directory contents are the mul-
tiple copies of files whch authors elect to include.
For example, as of 1 July 1993, approximately 27

copies of the LATg macros exist in the archve-
only one of whch (in macros/l atex/di s t r i bs/) is
authoritative. With linkmg, the mirror simply calls
in the link and the latest versions of related files
(from their well-specified directory) d l be delivered
to users.

Getting a File into the CTAN Without
Mirroring

If mirroring is not practical (either because of
inability to mirror a host, lack of a public ftp area
in which to place a file, lack of ftp altogether,
the contribution is a small number of files, or
any other reason), authors can still easily get files
included into the CTAN with electronic mail or via
anonymous ftp.

Electronic Mail. To submit a contribution via elec-
tronic mail, use the address:

CTAN-Mgr@SHSU.edu

or

CTAN-Mgr@SHSU.BITNET

including the file in whatever manner is feasible
(encoding of executables, splitting of files, indicating
within a single post with multiple files where to
"cut", etc.). In these cases, checksums are ideal
as it provides verification that the file received for
archving purposes is indeed the same file whch
the author intended for inclusion. A brief note
describing the contribution is very appreciated. As
soon as the contribution has been processed into
the CTAN, the submitting author will be notified via
return electronic mail.

Anonymous ftp. To submit a contribution via

ftp, connect to one of the CTAN hosts with an
ftp client. When prompted for a username, type
"anonymous" (all lowercase; without quotes) and
use your complete electronic mail address as your

346 TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Comprehensive TEX Archve Network (CTAN)

password. The Aston and SHSU CTAN hosts sup-
port the / i ncomi ng/ directory for contributions

(uploads) of files; the Stuttgart CTAN host supports

the / s o f t / i ncomi ng/tex/ directory for contribu-

tions of TEX-related files. Once connected, a typical

upload session would look like:

cd <appropriate incoming area> ! ! 1.

mkdi r <your di rectory name> ! ! 2 .

cd <your di rectory name> ! ! 3 .
[binary I asci i] ! ! 4 .

[mlput your f i l e (s) ! ! 5 .

ignoring everythng beginning with and to the right

of ! ! above. Each step represents:

1. cd - change directory to proper incoming area

(see above).
2. mkdi r - make subdirectory (optional), whch

is especially nice to retain together multiple

files contributions which are intended to stay

together; you may use any your d i r ec to ry

name you please.

3. cd - change to the directory you just created
so you may use it.

4. binary or a s c i i - just to be safe, it's al-

ways best to verify the intended transfer mode
(binary or asc i i) prior to transfer.

5. [m] put - use standard ftp p u t or mput com-

mand to place your files in the incoming area.

Future Directions

While the CTAN hierarchy and holdings between its

hosts are relatively stable at present, this does not
imply that the project is completed. Topics for

potential extension are:

1. The creation of on-demand "kits". At present,

the systems/ directory herarchy includes sets of

packages intended for system-specific installation.
One very serious potential problem with these file

sets is that they are not automatically updated
when new files are introduced to the archive. For

example, some of the system-specific installations

include prior versions of macro sets (generally,

the LATEX macros in these file sets are outdated),
drivers (such as the rapidly changing dvi ps), or

other dimensions of the included software. This
implies that users retrieving these file sets, while

able to install TEX, have to immediately return to the

archves to upgrade their systems.

An alternative to the present process would

be for servers to have the capability of creating

on-demand up-to-the-minute "luts" for platform-

specific installations. However, specific design
features for this functionality must be developed.

2. The use of a non-ftp mirroring mechanism. At

present, the mirroring mechanism used by the CTAN
hosts suffice for its use. However, ftp is not an

efficient mechanism for moving the quantity of files

involved in this project. A much preferable solution

would be the use of some alternate protocol whch
allows for verification and automatic updating of all

hosts in the CTAN.

3. Addition of other CTAN hosts. At present, the

workload of the three hosts involved in t h s project
is non-trivial. Essentially, the eastern side of the

Atlantic is served by two hosts, whde North America
is served by a single host. The present configuration

of hosts lends itself to easy extension to another

North American host to service the Americas, as

well as a Pacific-based host to serve Asia, the Pacific
Rim, and the Southern Hemisphere. Simply creating

a mirror of one of the existing CTAN hosts in these

regions, with no additional network responsibilities,

would be more than acceptable.

4. Automation of archival information. While the

CTAN possesses the most comprehensive collection

of TEX-related materials, one very dissatisfying as-

pect remains. T h s problem area lies in the collation

of information which is quickly retrievable (even by

the archvists themselves) which points to related
files, required files, version requirements, authorita-

tive location of files, listing of most recently added

files within an area, etc. The mirroring process

is marvelous at collecting files; however, without

proper and somewhat standardized documentation

of each component of the archive, tracing problems
may prove to be painful.

At present, David Jones' index of macros - a

wholly volunteer effort - exists and serves t h s func-
tion admirably withn the context of macros. Ad-

ditionally, the "Frequently Asked Questions" (FA0

files from the USENET newsgroup comp . t e x t . t ex

provide more information on other selected aspects
whch are included in the collection. However, the

fact that these are volunteer efforts, as well as the

fact these only cover a microcosm at a point in time

of the complete and rapidly changing archive, is

troubling.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

George D. Greenwade

Appendix A

The Top-Level Directory Hierarchy

Once into the CTAN host's root area, the following directory herarchy is presented:

arch i ve-tool s/

b ib l iography/

d iges ts /

documentati on/

dv i ware/

f on ts /

graphi cs/

he1 p/
indexing/

1 anguages/

1 oca l /

macros/

m i sc/

support/

systems/

web/

In brief, the contents of these directories include:

arch ive- too l s/ contains the various archiving tools which users may find useful.

b i b l i ography/ contains bibliography-related files, such as B~BTEX.

d iges ts / contains back issues of TEX-related periodicals.

documentation/ contains files and tutorials which document various aspect of TEX.

dv i ware/ contains the various dvi-to-whatever filters and drivers.

f on ts / contains a collection of fonts, both sources and pre-compiled.

graphics/ contains utilities and macros related to graphics.

he1 p/ contains files which provide an overview to the archwe and the TEX system.

i ndexi ng/ contains utilities and related files for indexing documents.

1 anguages/ contains non-English related implementations of TEX.

1 ocal / contains local site-specific files -not of general interest.

macros/ contains macros for TEX and its derivatives in unique subdirectories.

m i sc/ contains files and programs which cannot otherwise be catalogued.

support/ contains files and programs which can be used in support of TEX.

systems/ contains complete system setups, organized by operating system.

web/ contains WEB-related files and utilities.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Comprehensive TEX Archve Network (CTAN)

Appendix B

Gopher Menus from Aston and SHSU

The menus for the CTAN archives via Gopher as of the time of t h s paper are provided below. For

f t p . t e x . ac. uk the Gopher menu structure appears as:

The menu's f o r t h e CTAN arch ives v i a Gopher as o f t h e t ime of t h i s paper

Root gopher se rver : f t p . t ex .ac .uk

1. UK TeX Arch ive/

2 . Aston U n i v e r s i t y /

3. Minnesota Gopher r oo t /

4 . Archaeology/

5 . Arch ie <?>

6. Font Samples/

7. General WAIS databases/

8 . Looking t h i ngs a t AMS <TEL>

9. Veronica (search menu i t ems i n most o f Copherspace)/

10. World Wide Web (Hypertext f r a CERN) <TEL>

and selecting item 1. from this menu yields:

UK TeX Arch ive

1. We1 come.

2. A rch ive d i r ec to r y /

3 . Indexed FTP (D i r e c t o r i e s names on ly) o f UK TeX Arch ive.

4 . Indexed FTP o f UK TeX Arch ive .

5 . Indexed access t o a r ch i ve h i e ra r chy <?>

6 . Other Arch ives/

7. TeX Font Samples/

8 . UK-TeX.

9. WAIS database: TeX --- l i s t o f FTP s i t e s w i t h TeX ma te r i a l <?>

10. WAIS database: TeX Frequent1 y Asked Quest ions (UK s p e c i f i c) <?>

11. WAIS database: TeX index o f s t y l e s and macros (by David Jones) <?>

12. WAIS database: The TeX Book <?>

13. WAIS database: back i ssues o f TeXhax, 1986 -- <?>

14. WAIS database: back i ssues o f UKTeX news le t t e r <?7

Selecting item 2. from this menu yields the directory hierarchy described in Appenduc A.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

George D. Greenwade

For N i o rd . SHSU . edu the Gopher menu structure appears as:

Root gopher se r ve r : N i o rd . SHSU. edu

1. About t h e Sam Houston S ta te U n i v e r s i t y Gopher.

2 . Customizing t h e P r i n t command a t SHSU.

3. A l l t he Gopher Servers i n t h e World/

4. Chronic le o f Higher Educat ion "EVENTS i n ACADEMEm/

5 . Economics (SHSU Network Access I n i t i a t i v e P ro j ec t) /

6. I n t e r n e t I n f o rma t i on /

7. LaTeX3 Publ i c Document L i b r a r y /

8 . L i b r a r i e s , P e r i o d i c a l s , References, e t c . /

9 . Minnesota Gopher (Mama Gopher; g e t "your ownq c l i e n t s here !) /

10. SAMINFO -- Sam Houston S ta te U n i v e r s i t y I n f o rma t i on System <TEL>

11. TeX- re1 a ted Mate r i a1 s/

1 2 . Thesaurus and D i c t i o n a r i e s /

13. USENET News (from Oak1 and U n i v e r s i t y) /

14. VMS Gopher-related f i l e l i b r a r y /

15. Veronica (search menu i tems i n most o f GopherSpace) /
16. Weather Forecasts (Na t iona l Weather Serv ice; US)/

17. Weather Underground (U n i v e r s i t y o f M i ch i gan) <TEL>

18. anonymous f t p a rch ives on f t p . shsu. edu/

and selecting i tem 11. f rom this menu ylelds:

TeX-re1 a ted Mate r i a1 s

1. Comprehensive TeX Arch ive Network (CTAN) a t SHSU/

2. UK TeX Arch ive/

3. Archives o f INFO-TeX/ctt-Di ges t (comp. t e x t . tex) /

4. EconBi b (LaTeX/Bi bTeX s t y 1 es f o r economi cs)/

5 . ;-c . * . FAQs , REFERENCE and PRIMERS . ?:. ;':.

6. FAQ f o r comp. t e x t . t e x (t e x t and WAIS indexed)/

7 . FAQ Supplement f o r comp.text. t e x (t e x t and WAIS indexed)/

8 . TeX-Index (t e x t and WAIS indexed)/

9. FAQ f o r comp.fonts (t e x t and WAIS indexed)/

10. The Canonical l i s t o f MetaFont f o n t s .

11. A Gent le I n t r o d u c t i o n t o TeX

12. Components o f TeX/

13. Essen t ia l LaTeX/

14. MetaFont f o r Beginners.

15. NFSS i n t h e Context o f LaTeX

16. ?:. * . RELATED FILES . * . ;':.
17. LaTeX3 Publ i c Document L i b r a r y /

18. L i t e r a t e Programming L i b r a r y /

Selecting i tem 1. f rom this menu yields the directory herarchy described in Appendix A.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

The Comprehensive TEX Archve Network (CTAN)

Appendix C

0 0 0 XXX
0 0 0 X h X

%%%

%%%

%%%
0 0 0 XXX

%%%

%%%
0 0 0 XX /6
0 0 0 XXX
0 0 0 XXX

%%%

%%%

%%%

%%%
0 0 0 X X X
0 0 0 X X X
0 0 0 h X X

%%%

%%%

%%%

%%%
0 0 0 X X X
0 0 0 X X X
0 0 0 X X X

%%%

%%%
0 0 0 X X X
0 0 0 X h X

%%%
0 0 0 X X X

%%%

%%%
0 0 0 X X X
0 0 0 X A

QLaTeX-style-f i 1 e{

f i 1 ename = "showkeys.sty",

ve r s i on = "1.01",

da te = "25 August 1992",

t ime = "11:32:08 BST",

author = "David Car l i s l en,

address = "Computer Science Department

Manchester U n i v e r s i t y

Oxford Road

Manchester

England

M13 9PL",

telephone = "+44 6 1 275 6139",

FAX = "+44 6 1 275 6236",

checksum = "61501 431 1786 14304",

emai 1 = "car l is le@cs.man.ac.uk (I n t e r n e t) " ,

codetabl e = "ISO/ASCII",

keywords = "LaTeX, l a b e l , r e f , c i t a t i o n , keys",

supported = "yes",

d o c s t r i ng - -

A LaTeX s t y l e op t i on which causes

\ l abe l , \ r e f , \pageref, \ c i t e and \ b i b i tem

t o p r i n t t h e i r argument f o r p r o o f reading purposes. The main

f e a t u r e o f t h i s s t y l e i s t h a t these l a b e l s a re p r i n t e d i n such a

way as t o min imise t h e changes caused t o t h e f o r m a t t i n g o f t h e

r e s t o f t h e document t e x t .

Documentation requi res M i t r e l bach's doc. s t y .

The checksum f i e l d above was produced by

Robert Solovay's checksum u t i l i t y . " ,

3

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

TUGboat, Volume 14 (1993), No. 3

Institutional
Members

The Aerospace Corporation,
El Segundo, California

Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

ArborText, Inc.,
Ann Arbor, Michigan

ASCII Corporation,
Tokyo, Japan

Brookhaven National Laboratory,
Upton, New York

Brown University,
Providence, Rhode Island

California Institute of Technology,
Pasadena, California

Calvin College,
Grand Rapids, Michigan

Carleton University,
Ottawa, Ontario, Canada

Centre Inter-RBgional de

Calcul ~ l e c t r o n i ~ u e , CNRS,
Orsay, France

CERN, Geneva, Switzerland

College Militaire
Royal de Saint Jean,
St. Jean, Quebec, Canada

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications
Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

Cornell University,
Mathematics Department,
Ithaca, New York

CSTUG, Praha, Czech Republic

E.S. Ingenieres Industriales,
Sevilla, Spain

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

European Southern Observatory,
Garching bei Miinchen, Germany

Fermi National Accelerator
Laboratory, Batavia, Illinois

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

GKSS, Forschungszentrum
Geesthacht GmbH,
Geesthacht, Germany

Grinnell College,
Computer Services,
Grinnell, Iowa

Grumman Aerospace,
Melbourne Systems Division,
Melbourne, Florida

GTE Laboratories,
Waltham, Massachusetts

Hungarian Academy of Sciences,
Computer and Automation
Institute, Budapest, Hungary

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Intevep S. A., Caracas, Venezuela

Iowa State University,
Ames, Iowa

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Louisiana State University,
Baton Rouge, Louisiana

Macrosoft, Warsaw, Poland

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,

Brno, Czechoslovakia

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
fiir Mathematik,
Bonn, Germany

National Research Council
Canada, Computation Centre,
Ottawa, Ontario, Canada

Naval Postgraduate School,
Monterey, California

New York University,

Academic Computing Facility,
New York, New York

Nippon Telegraph &
Telephone Corporation,
Software Laboratories,
Tokyo, Japan

Observatoire de GenBve,
UniversitB de GenBve,
Sauverny, Switzerland

The Open University,
Academic Computing Services,
Milton Keynes, England

Personal 'I)$, Incorporated,
Mill Valley, California

Politecnico di Torino,
Torino, Italy

Princeton University,
Princeton, New Jersey

Rogaland University,
Stavanger, Norway

Ruhr Universitat Bochum,
Rechenzentrum,
Bochum, Germany

Rutgers University,
Computing Services,
Piscataway, New Jersey

St. Albans School,
Mount St. Alban,
Washington, D. C.

Srnithsonian Astrophysical
Observatory, Computation Facility,
Cambridge, Massachusetts

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Germany

Springer-Verlag New York, Inc.,
New York, New York

Stanford Linear
Accelerator Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

TUGboat , Volume 14 (1993), No. 3 35 7

Texas A & M University,
Department of Computer Science,
College Station, Texas

United States Military Academy,
West Point, New York

Universitat Augsburg,
Augsburg, Germany

University of British Columbia,
Computing Centre,
Vancouver, British Columbia,
Canada

University of British Columbia,
Mathematics Department,
Vancouver, British Columbia,

Canada

University of California, Berkeley,
Space Astrophysics Group,
Berkeley, California

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of California, Santa
Barbara, Santa Barbara, California

University of Canterbury,
Christchurch, New Zealand

University College,
Cork, Ireland

University of Crete,
Institute of Computer Science,
Heraklio, Crete, Greece

University of Delaware,

Newark, Delaware

University of Exeter,
Computer Unit,
Exeter, Devon, England

University of Groningen,
Groningen, The Netherlands

University of Heidelberg,
Computing Center,
Heidelberg, Germany

University of Illinois at Chicago,
Computer Center,
Chicago, Illinois

Universitat Koblenz-Landau,
Koblenz, Germany

University of Manitoba,
Winnipeg, Manitoba

University of Maryland,
Department of Computer Science,
College Park, Maryland

Universita degli Studi di Trento,
Trento, Italy

University of Oslo,
Institute of Informatics,
Blzndern, Oslo, Norway

University of Salford,
Salford, England

University of South Carolina,
Department of Mathematics,
Columbia, South Carolina

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas at Austin,
Austin, Texas

University of Washington,
Department of Computer Science,
Seattle, Washington

Uppsala University,
Uppsala, Sweden

Villanova University,
Villanova, Pennsylvania

Virginia Polytechnic Institute,
Interdisciplinary Center
for Applied Mathematics,
Blacksburg, Virginia

Vrije Universiteit,
Amsterdam, The Netherlands

Washington State University,
Pullman, Washington

Wolters Kluwer,
Dordrecht, The Netherlands

Yale University,
Department of Computer Science,
New Haven, Connecticut

358 TUGboat, Volume 14 (1993), No. 3

-
Calendar

1993

Oct 4-8

Oct 7

Oct 18 - 22

Oct 18

Oct 19

Oct 27

CyrTUG meeting,
Pereslavll-Zalesskii, near Pleshchevo
Lake. For information, contact Irina
Makhovaya (cy r tugmi r .msk . su).

m-Stammtisch at the Universitat
Bremen, Germany. For information,
contact Martin Schroder
(115dQalf. zf n . mi-bremen . de;
telephone 04211628813).

TUG Course:
BeginningIIntermediate 'QX
Santa Barbara, California

m-Stammtisch in Bonn,
Germany. For information,
contact Herbert Framke
(Herbert-FramkeQBN . MAUS. DE;
telephone 02241 400018).

m-Stammtisch in Duisburg,
Germany. For information,
contact Friedhelm Sowa
(texQze8.rz.mi-duesseldorf.de;
telephone 0211/311 3913).

'QX-Stammtisch, Hamburg,
Germany. For information,
contact Reinhard Zierke

(zierkeQinf ormat i k . mi-hamburg . de;
telephone (040) 54715-295).

TUG Courses, Santa Barbara, California

Oct 25 - 29 Intensive I 4 m

Nov 1 - 5 Advanced 'T@ and Macro Writing

Nov 8 - 9 Practical SGML and 'QX

Nov 4 'QX-Stammtisch at the Universitat
Bremen, Germany. (For contact
information, see Oct 7.)

Nov 10 TUG Course: SGML and "I)@ for
Publishers, New York City

Nov 12 TUG Course: Tj$ for Publishers,
Washington, DC

Nov 15 TUGboat Volume 15,
lst regular issue:
Deadline for receipt of technical
manuscripts.

Nov 15

Nov 16

Nov 18

Nov 23

Nov 24

Dec 2

Dec 13

Dec 20

Dec 22

Dec 21

'QX-Starnmtisch in Bonn, Germany.
(For contact information, see
Oct 18.)

'QX-Stammtisch in Duisburg,
Germany. (For contact information,
see Oct 19.)

NTG Meeting,

"(I&)'I&x user environment",
Oce, Den Bosch, Netherlands.
For information, contact
Gerard van Nes (vannesQecn . nl).

TUGboat Volume 14,
3rd regular issue:
Mailing date (tentative).

m-Stammtisch, Hamburg,
Germany. (For contact information,
see Oct 27.)

'QX-Stammtisch at the Universitat
Bremen, Germany. (For contact
information, see Oct 7.)

TUGboat Volume 15,
lst regular issue:
Deadline for receipt of news items,
reports.

m-Stammtisch in Bonn, Germany.
(For contact information, see
Oct 18.)

'QX-Stammtisch, Hamburg,
Germany. (For contact information,
see Oct 27.)

QX-Stammtisch in Duisburg,
Germany. (For contact information,
see Oct 19.)

TUG Courses, Santa Barbara, California

Jan 31 - Intensive IP'QX
Feb 4

Feb 7 - 11 BeginningIIntermediate T&X

Feb 14 - 18 Advanced and Macro Writing

Feb 28- Modifying Style Files
Mar 2

Status as of 15 September 1993

TUGboat, Volume 14 (1993), No. 3

Feb 15 TUGboat Volume 15,
Pd regular issue:
Deadline for receipt of technical
manuscripts (tentative).

Mar 9 TUGboat Volume 15,
lSt regular issue:
Mailing date (tentative).

Mar 15 TUGboat Volume 15,
2nd regular issue:
Deadline for receipt of news items,
reports (tentative).

Apr 11 - 15 Four conferences,
Darmstadt, Germany:

0 EP94, Electronic Pubishing,
Document Manipulation and
Typography (for information,
contact ep94Qgmd. de);

0 RIDT94, Raster Imaging and Digital
Typography (for information,
contact r i d t940 i r i s a . fr);

TEP94, Teaching Electronic
Publishing (for information, contact
1tsdysonQreading. ac .uk);

0 PODP94, Principles of Document
Processing (for information,
contact podp94Qcs. umd . edu).
Deadline for submission of papers:
15 August 1993

May 23 TUGboat Volume 15,
Znd regular issue:
Mailing date (tentative).

Jul 24 - 29 SIGGRAPH'94: 21St International
ACM Conference on Computer
Graphics and Interactive Techniques.
Orlando, Florida (for information,
contact siggraph-94Qsiggraph. org,
telephone 312-321-6830).

Jul 31 - TUG Annual Meeting, Santa
Aug 4 Barbara, California. For information,

contact the TUG office.

For additional information on the events listed
above, contact the TUG office (805-963-1338, fax:
805-963-8358, email: tugQtug . org) unless otherwise
noted.

366

366

Cover 3

367

364,365

360

360

368

Index of Advertisers

American Mathematical Society

ArborText

Blue Sky Research

Ed Baker Technical Services

Kinch Computer Company

Micro Programs, Inc.

TEX Users Group

Y&Y

TUG94
Santa Barbara, California

31 July - 4 A U ~ U S ~

Call for Papers

The 15th Anniversary Meeting of the T)$ Users Group will be held in Santa
Barbara, California from 31 July through 4 August 1994. Those wishing to
present papers must have their titles and outlines submitted to the program
committee at tug94Qtug. org by February 1, 1994, completed papers by
May 20,1994.

Since and METAFONT applications and interests are as varied as our users,
we are encouraging papers over the entire range of related topics, with a
particular focus on innovation. Let us take a fresh look at what we have and
envision new areas of use.

FOR YOUR TOOLBOX FOR YOUR BOOKSHELF

CAPTURE
Capture graphics generated by application programs.

Make LaserJet images compatible with TEX. Create
pk files from pc l or pcx files. $135.00
texpic
Use texpic graphics package t o integrate simple

graphics-boxes, circles, ellipses, lines, arrows-into

your 'I)$ documents. $79.00

Voyager
'I?EX macros to produce viewgraphs-including bar

charts-quickly and easily. They provide format, in-

. . . . dentation, font, and spacing control. $25.00

TEX BY EXAMPLE NEW!
Input and output are shown side-by-side. Quickly

. see how to obtain desired output. $19.95
Tji$ BY TOPIC NEW!

. . . Learn to program complicated macros. $29.25
TEX FOR THE IMPATIENT
Includes a complete description of W 7 s control se-

quences. $29.25

FOR THE BEGINNER NEW!
. . A carefully paced tutorial introduction. $29.25

BEGINNER'S BOOK OF
A friendly introduction for beginners and aspiring
"wizards." $29.95

Micro Programs Inc. 251 Jackson Aye. Syossel. NY 11791 (516) 921-1351

Complete and return this form with
payment to:

TEX Users Group
Membership Department
P. 0. Box 869
Santa Barbara, CA 93102 USA

Telephone: (805) 963-1338
FAX: (805) 963-8358
Email: tugQtug . org

Membership is effective from Jan-
uary 1 to December 31 and includes
subscriptions to TUGboat, The Com-
munications of the T j j X Users Group
and the TUG newsletter, T j j X and
TUG NEWS. Members who join after
January 1 will receive all issues
published that calendar year.

For more information . . .
Whether or not you join TUG now,
feel free to return this form to
request more information. Be sure
to include your name and address
in the spaces provided to the right.

Check all items you wish to receive
below:

Institutional membership
information

Course and meeting information

Advertising rates

Products/publications catalogue

Public domain software
catalogue

More information on Q X

Individual Membership Application

Name

Institutional affiliation, if any

Position

Address (business or home (circle one))

- - -

City ProvinceIState

Country Postal Code

Telephone FAX

Email address

I am also a member of the following other Q X organizations:

There are two types of TUG members: regular members, who pay annual
dues of $60; and full-time student members, whose annual dues are $30.
Students must include verification of student status with their
applications.

Please indicate the type of membership for which you are applying:

Regular at $60 Full-time student at $30

Amount enclosed for 1993 membership: $

O ChecWmoney order payable to Q X Users Group enclosed
(checks in US dollars must be d r a m on a US bank; checks in other
currencies are acceptable, d r a m on an appropriate bank)

O Bank transfer:

Q X Users Group, Account #1558-816,
Santa Barbara Bank and Trust, 20 East Carrillo Street,
Santa Barbara, CA 93101 USA

your bank

ref #

O Charge to MasterCardNISA

Card # Exp. date

Signature

Complete and return this form
with payment to:

TEX Users Group
Membership Department
P. 0. Box 21041
Santa Barbara, CA 93121-1041
USA

Membership is effective from
January 1 to December 31. Members
who join after January 1 will receive
all issues of TUGboat and 7&Y and
TUG NEWS published that calendar
year.

For more information . . .
Correspondence

TEX Users Group
F! 0. Box 869
Santa Barbara, CA 93102
USA

Telephone: (805) 963-1338
FAX: (805) 963-8358
Email: t u e t u g . org

Whether or not you join TUG now,
feel free to return this form to
request more information.

Check all items you wish to
receive below:

El Course and meeting information

El Advertising rates

El Products/publications catalogue

Public domain software
catalogue

More information on TEX

Institutional Membership Application

Institution or Organization

Principal contact

Address

City ProvinceIState

Country Postal Code

Daytime telephone FAX

Email address

Each Institutional Membership entitles the institution to:

designate a number of individuals to have full status as TUG
individual members;

0 take advantage of reduced rates for TUG meetings and courses for
all staff members;

be acknowledged in every issue of TUGboat published during the
membership year.

Educational institutions receive a $100 discount in the membership fee.
The three basic categories of Institutional Membership each include
a certain number of individual memberships. Additional individual
memberships may be obtained at the rates indicated. Fees are as follows:

Category Rate (educ. l non-educ.) Add'l mem.
A (includes 7 memberships) $ 540 / $ 640 $50 ea.
B (includes 12 memberships) $ 815 / $ 915 $50 ea.
C (includes 30 memberships) $1710 / $1810 $40 ea.

I Please indicate the type of membership for which you are applying:

I Category - + - additional individual memberships

I Amount enclosed for 1993 membership: $

ChecWmoney order payable to Q X Users Group enclosed
(payment in US dollars must be drawn on a US bank; payment in
other currencies is acceptable, drawn on an appropriate bank)

I B a n k transfer: your bank

I ref #

Q X Users Group, Account #1558-816,
Santa Barbara Bank and Trust, 20 East Carrillo Street,
Santa Barbara, CA 93101 USA

I El Charge to MasterCardMSA

I Card# Exp. date -
I Signature

Please attach a list of individuals whom you wish to designate as TUG

individual members. Minimally, we require names and addresses so

that TUG publications may be sent directly to these individuals, but we

would also appreciate receiving the supplemental information regarding

phone numbers, email addresses, and Q X interests as requested on the
TUG Individual Membership Application form. For this purpose, the

latter application form may be photocopied and mailed with this form.

North America

Abrahams, Paul
214 River Road, Deerfield, MA 01342;
(413) 774-5500

Development of n X macros and macro
packages. Short courses in n X . Editing
assistance for authors of technical articles,
particularly those whose native language is
not English My background includes
programming, computer science,
mathematics, and authorship of QX for the
Impatient.

American Mathematical Society
P. 0. Box 6248, Providence, RI 02940;
(401) 455-4060

Typesetting from DVI files on an Autologic
APS Micro-5 or an Agfa Compugraphic
9600 (Postscript). Times Roman and
Computer Modern fonts. Composition
services for mathematical and technical
books and journal production.

Anagnostopoulos, Paul C.
433 Rutland Street, Cariisle, MA 01741;
(508) 371-2316

Composition and typesetting of high-quality
books and technical documents.
Production using Computer Modern or any
available Postscript fonts. Assistance with
book design. I am a computer consultant
with a Computer Science education.

-

ArborText, Inc.
1000 Victors Way, Suite 400, Ann Arbor,
MI 48108; (313) 996-3566

n X installation and applications support.
'&X-related software products.

Archetype Publishing, Inc.,
Lori McWilliam Pickert
F? 0. Box 6567, Champaign, IL 61821;
(217) 359-8178

Experienced in producing and editing
technical journals with TEX; complete book
production from manuscript to
camera-ready copy; 'QX macro writing
including complete macro packages;
consulting.

The Bartlett Press, Inc.,
Frederick H. Bartlett
Harrison Towers, 6F, 575 Easton Avenue,
Somerset, NJ 08873; (201) 745-9412

Vast experience: loo+ macro packages,
over 30,000 pages published with our
macros; over a decade's experience in all
facets of publishing, both %X and
non-'&X; all services from copyediting and
design to final mechanicals.

Cowan, Dr. Ray E
141 Del Medio Ave. #134, Mountain
View, CA 94040; (415) 949-4911

Ten Ears of QX and Related Software
Consulting, Books, Documentation,
Journals, and Newsletters. n X & IP'QX
macropackages, graphics; Postscript
language applications; device drivers; fonts;
systems.

Electronic Technical Publishing
Services Co.
2906 Northeast Glisan Street, Portland,
Oregon 97232-3295;

(503) 234-5522; FAX: (503) 234-5604

Total concept services include editorial,
design, illustration, project management,
composition and prepress. Our years of
experience with TEX and other electronic
tools have brought us the expertise to work
effectively with publishers, editors, and
authors. ETP supports the efforts of the
TEX Users Group and the world-wide TEX
community in the advancement of superior
technical communications.

NAX Associates
817 Holly Drive E. Rt. 10, Annapolis, MD
21401; (410) 757-5724

Extensive long term experience in 'QX
book publishing with major publishers,
working with authors or publishers to turn
electronic copy into attractive books. We
offer complete free lance production
services, including design, copy editing, art
sizing and layout, typesetting and repro
production. We specialize in engineering, ,

science, computers, computer graphics,
aviation and medicine.

Ogawa, Arthur
1101 San Antonio Road, Suite 413,
Mountain View, CA 94043-1002;
(415) 691-1126;
ogawaQapplelink.apple.com.

Specialist in fine typography, W X book
production systems, database publishing,
and SGML. Programming services in 'QX,
IP'QX, Postscript, SGML, DTDs, and
general applications. Instruction in TEX,
W&X, and SGML. Custom fonts.

Pronk&Associates Inc.
1129 Leslie Street, Don Mills, Ontario,
Canada M3C 2K5;

(416) 441-3760; F a : (416) 441-9991

Complete design and production service.
One, two and four-color books. Combine
text, art and photography, then output
directly to imposed film. Servicing the
publishing community for ten years.

Quixote Digital ?5.pography1 Don
Hosek
349 Springfield, #24, Claremont, CA
91711; (714) 621-1291

Complete line of 'QX, IPQX, and
METAFONT services including custom
I4QX style files, complete book production
from manuscript to camera-ready copy;
custom font and logo design; installation of
customized n X environments; phone
consulting service; database applications
and more. Call for a free estimate.

Richert, Norman
1614 Loch Lake Drive, El Lago, TX 77586;
(713) 326-2583

Q X macro consulting.

QXnology, Inc., Amy Hendrickson
57 Longwood Ave., Brookline, MA 02146;
(617) 738-8029

m X macro writing (author of Macro'QX);
custom macros to meet publisher's or
designer's specifications; instruction.

Type 2000
16 Madrona Avenue, Mill Valley, CA
94941;
(415) 388-8873; FAX (415) 388-8865

$2.50 per page for 2000 DPI TEX camera
ready output! We have a three year history
of providing high quality and fast
turnaround to dozens of publishers,
journals, authors and consultants who use
'QX. Computer Modern, Bitstream and
METRFONT fonts available. We accept DVI
files only and output on RC paper. $2.25
per page for 100+ pages, $2.00 per page for
500+ pages.

Outside North America

m o m Ltd.
Electronical Publishing, Battyhy u. 14.
Budapest, Hungary H-1015;
(036) I l l52 337

Editing and typesetting technical journals
and books with TEX from manuscript to
camera ready copy. Macro writing, font
designing, n X consulting and teaching.

Information about these services
can be obtained from:

'I&$ Users Group

P. 0. Box 869

Santa Barbara, CA 93102-0869

Phone: (805) 963-1388

Fax: (805) 963-8538

AP-TEX Fonts Avant Garde
Avant G a r d e Khe

=-compatible Bit-Mapped Fonts
Identical to

Adobe Postscript Typefaces

Avant Garde Demibid

Demibold Avant Garde Oblique

If you are hungry for new TI$ fonts, here is a feast guar-
anteed to satisfy the biggest appetite! The AP-TEX fonts
serve you a banquet of gourmet delights: 438 fonts cov-
ering 18 sizes of 35 styles, a t a total price of $200. The
AP-TJ$ fonts consist of PK and TFM files which are ex-
act T@-compatible equivalents (including "hinted" pix-
els) to the popular Postscript name-brand fonts shown .
at the right. Since they are directly compatible with any
standard T@ implementation (including kerning and liga-
tures), you don't have to be a expert to install or use

them.

Bookman
Bookman D e m w

Demibdd BOO kman ,talk

C o u r i e r

C o u r i e r Oblique

Courier Bold

Helvetica

Helvetica Oblique When ordering, specify resolution of 300 dpi (for laser

printers), 180 dpi (for 24-pin dot matrix printers), or 118
dpi (for previewers). Each set is on ten 360 KB 5-114"
PC floppy disks. The $200 price applies to the first set
you order; order additional sets at other resolutions for
$60 each. A 30-page user's guide fully explains how to
install and use the fonts. Sizes included are 5, 6, 7, 8, 9,
10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points; headline styles
(equivalent to Times Roman, Helvetica, and Palatino, all

in bold) also include sizes 29.9, 35.8, 43.0, 51.6, 61.9, and
74.3 points.

Helvetica Bold

Helvetica %iue
Helvetica Narrow
Helvetica Narrow Oblique

Helvetica Narrow
Helvetka Narrow kYqw

Schoolbook :Fry
Schoolbook /ZCentury

Schoolbook ~Gcemu' The Kinch Computer Company

Schoolbook
Newcentury
Bdd Italic

501 South Meadow Street
Ithaca, New York 14850

Telephone (607) 273-0222
FAX (607) 273-0484

Palatino RO,,

Palatino BOM

Palatino ;%
Helvetica, Palatino, Times, and New Century Schoolbook are trademarks of
Allied Linotype Co. ITC Avant Garde, ITC Bookman, ITC Zapf Chancery,
and ITC Zapf Dingbats are registered trademarks of International Typeface
Corporation. Postscript is a registered trademark of Adobe Systems Incorp*
rated. T h e owners of these trademarks and Adobe Systems, Inc. are not the
authors, publishers, or licensors of the AP-?)F)(fonts. Kinch Computer Com-
pany is the sole author of the AP-TEX fonts, and has operated independently
of the trademark owners and Adobe Systems, Inc. in publishing tlus soft-
ware. Any reference in the AP-TEX font software or in this advertisement to
these trademarks is solely for software compatibility or product comparison.

LaserJet and DeskJet are trademarks of Hewlett-Packard Corporation. 'IEX
is a trademark of the American Math Society. TurboQX and AP-'IEX are
trademarks of Kinch Computer Company. Prices and specifications subject to
change without notice. Revised October 9, 1990.

Times R O M ~

Times l t 4 k

Times Bdd

Times 1::
Medum

Zapf Chance y Italic

Symbol AQTfiAIIO

Zapf Dingbats

T
HE MOST VERSATILE TEX ever
published is breaking new
ground in the powerful and
convenient graphical envi-

ronment of Microsoft Windows: Tur-
~oTEX Release 3.1E. TurboT~X runs
on all the most popular operating
systems (Windows, MS-DOS, OS/2,
and UNIX) and provides the latest
TEX 3.14 and M ETR FONT 2.7 stan-
dards and certifications: preloaded
plain TEX, BTEX, W-TEX and A&-
14TEX, previewers for PC's and X-
servers, M ETRFONT, Computer
Modem and IbTjX fonts, and printer
drivers for HP LaserJet and DeskJet,
PostScript, and Epson LQ and FX
dot-matrix printers.

Best-selling Value: TurboT~X
sets the world standard for power
and value among TEX implementa-
tions: one price buys a complete,
commercially-hardened typesetting
system. Computer magazine recom-
mended it as "the version of TEX to
have," IEEE Software called it "indus-
trial strength," and thousands of sat-
isfied users around the globe agree.

TurboT~X gets you started quickly,
installing itself automatically under
MS-DOS or Microsoft Windows, and
compiling itself automatically under
UNLX. The 90-page User's Guide in-
cludes generous examples and a full
index, and leads you step-by-step
through installing and using TEX and
M ETA FONT.

Classic TEX for Windows. Even if
you have never used Windows on
your PC, the speed and power of
TurboT~X will convince you of the
benefits. While the TEX cornrnand-
line options and T~Xbook interaction
work the same, you also can control
TEX using friendly icons, menus, and

dialog boxes. Windows protected
mode frees you from MS-DOS lim-
itations like DOS extenders, over-
lay swapping, and scarce memory.
You can run long TEX formatting
or printing jobs in the background
while using other programs in the
foreground.

MS-DOS Power, Too: TurboT~X
still includes the plain MS-DOS pro-
grams. Virtual memory simulation
provides the same sized TEX that
runs on multi-megabyte mainframes,
with capacity for large documents,
complicated formats, and demanding
macro packages.

Source Code: The portable C
source to TurboT~X consists of over
100,000 lines of generously com-
mented TEX, TurboT~X, M ETA FONT,

previewer, and printer driver source
code, including: our WEB system in
C; PASCHAL, our proprietary Pascal-
to-C translator; Windows interface;
and preloading, virtual memory, and
graphics code, all meeting C portabil-
ity standards like ANSI and K&R.

Availability & Requirements:
TurboT~X executables for IBM PC's
include the User's Guide and require
640K, hard disk, and MS-DOS 3.0
or later. Windows versions run on
Microsoft Windows 3.0 or 3.1. Order
source code (includes Programmer's
Guide) for other machines. On the
PC, source compiles with Microsoft
C, Watcom C 8.0, or Borland C++ 2.0;
other operating systems need a 32-
bit C compiler supporting UNIX stan-
dard I/O. Specify 5-1/4" or 3-1/2"
PC-format floppy disks.

Upgrade at Low Cost. If you
have TurboT~X Release 3.0, upgrade
to the latest version for just $40 (ex-

ecutable~) or $80 (including source).
Or, get either applicable upgrade free
when you buy the AP-TEX fonts (see
facing page) for $ZOO!

No-risk trial offer: Examine the
documentation and run the PC Tur-
~oTEX for 10 days. If you are not sat-
isfied, retum it for a 100% refund or
credit. (Offer applies to PC executa-
bles only.)

Free Buyer's Guide: Ask for the
free, 70-page Buyer's Guide for de-
tails on TurboT~X and dozens of TEX-
related products: previewers, TEX-to-
FAX and TEX-to-Ventura/Pagemaker
translators, optional fonts, graphics
editors, public domain TEX accessory
software, books and reports.

Ordering TurboT~X

Ordering TurboT~X is easy and deliv-
ery is fast, by phone, FAX, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
public agencies (shpping and media
extra). Discounts available for quan-
tities or resale. International orders
gladly expedited via Air or Express
Mail.

The Kinch Computer Company

PUBLJSHERS OF TURBOTEX

501 South Meadow Street
Ithaca, New York 14850 USA

Telephone (607) 273-0222
FAX (607) 273-0484

TEX Publishing Services
From the Basic:
The American Mathematical Society offers you two basic, low cost TEX publishing services.

You provide a DVI file and we will produce typeset pages using an Autologic APS Micro-5

phototypesetter. $5 per page for the first 100 pages; $2.50 per page for additional pages.

You provide a Postscript output file and we will provide typeset pages using an Agfa/

Compugraphic 9600 imagesetter. $7 per page for the first 100 pages; $3.50 per page for
additional pages.

There is a $30 minimum charge for either service. Quick turnaround is also provided ... a manuscript

up to 500 pages can be back in your hands in one week or less.

To the Complex:

As a full-service TEX publisher, you can look to the American Mathematical Society as a single source

for any or all your publishing needs.

For more information or to schedule a job, please contact Regina Girouard, American Mathematical

Society, P. 0. Box 6248, Providence, RI 02940, or call 401-455-4060.

Macro-Writing I TEX Problem Solving

NEW! NEW!

Non-CM Fonts 1 Keyboarding '

Silicon Graphics Iris or Indigo DVILASERmP3
Solaris 2.1 Motif and OPEN LOOK Preview

Complete TEX packages
Ready to use, fully documented and supported.

Also Available For: Sun-4 (SPARC), IBM RS/6000,

DECRISC-Ultrix, HP 9000, and IBM PC's

Distribution Art and Pasteup

Call us for more information on our exciting new products!

I
Camera Work Printing and Bmding

1000 Victors Way A Suite 400 A AM Arbor, MI 48108 A (313) 996-3566 A FAX (313) 996-3573

LWbD
A BTEX Source Code Development System I

The BTEX document preparation system has proven it-
self as a tremendous system for creating technical doc-

uments. It is a feature rich system that can produce
documents to the highest standards of typography.

Unfortunately, even if you use it everyday, remembering

how to use all those features is next to impossible.

The J4CaD system brings a new, more user friendly, face
to the creation of BTEX documents.

A Pop-Up command selector contains all BTEX
commands. You simply select a command and

BCaD will prompt you for all options and fill-in
information. &COD then inserts the syntactically
correct command, or environment, into your doc-
ument.

r Pop-Up UTEX Command Menu

r Pop-Up UTEX Hyper-Help

r OS/2 and DOS Compatible

r 10 Editing Windows

r Versatile Macro Capability

r Unlimited Undo

r Regular Expression Search

r Journaling w/playback

Includes 2nd Day Priority Mail Shipping
for U S . customers. Shipping not included
for international orders. However, inter-
national orders gladly expedited via Air
or Express Mail.

30-Day Money Back Guarantee

When you need help, or examples for reference,

place the cursor under any UTEX command and
request Hyper-Help. A Pop-Up screen will dis-
play proper command syntax and a complete
example of its use. Many screens are cross-
referenced by Hyper-Links to related commands
and examples.

tabular
\begln~tabular)(format) ... ROW Material

1 \endltabular)
;The tabular environment is used for producing ruled tables.
I t can b. uemd in any mode and it processes text in LR mode.

The format scope defines the overall look of the table.
'The following special characters are used to specify format:

I Defines a vertical line.
1.c.r Deten~ine8 left, center or riqht text placement
eltext) Inserts text in every r w .
 width) Produce a parbox column of width units wide.
*(nua)(Cmt) Produce num C O ~ U M S with the same tmt spec.

Example: (1*(4)(cl)> produce a tabla of 4
centered columns each bounded by a %'rule.

controllinq Row Material:
& Seperate row alements.
\ \ Defines the row separator (aka. a carraiqe return) 1 \hline Draws a horizontal line across the full wldth

of the array. May only appear after a \ \ or at the
end of the first line.
Draws a horizontal line across columns i
through j, inclusive.

See Also:
Tabular-Example-1
Tabular*

I A single item that spans multiple columns is prduced with the \multicolurn command.

EBTS PO BOX 6421. Norfolk, MA 02056

TEL: 508-528-7728 FAX: 508-520-3272 email: ejb@world.std.com

The Lucida Bright + Lucida New Math

font set is the first alternative to Computer Modern complete with math fonts in ATM
compatible Adobe Type 1 format. Lucida Brigh

oks a bright n

cida New Math

cida New Math Italic, Lucida New M
and Lucida New Math Arrows) include the mathematical si
in mathematical and technical composition, including italic Greek capitals and 1
case. The Lucida New Math fonts contain the math characters that are standard in
the TEX math composition software, which, in its various forms, is one of the most
popular mathematical composition packages used worldwide. In addition to the
standard Computer Modern math font character sets, Lucida New Math fonts also
include the characters in the American Mathematical Society (A N S I symbol fonts.

Switching to Lucida Bright + Lucida New Math is as easy as adding an input statemen
to the head of your TEX source file. Aside from four styles of each of the expected
seriffed, sans serif, and fixed width text faces, the font set also contains Lucida
Blackletter, Lucida Calligraphy and Lucida Handwriting.

The Lucida Bright + Lucida New Math

is available in fully hinted ATM compatible Adobe Type 1 format for
h, IBM PC compatibles, as well as Unix/NeXT.

We also carry the other font sets commonly used with TEX in fully hinted A
compatible Adobe Type 1 format, but we are most excited about the new Lucida
Bright + Lucida New Math fonts. The finest tools for working with scalable
outline fonts in TEX are DVIPSONE and DVIWindo (on IBM PC compatibles).

Y&Y, Inc.
106 Indian Hill

Carlisle, MA 01741
(800) 742-4059 (508) 371-3286 (voice) (508) 371-2004 (fax)

ered trademark of Bigelow 81 Holmes. Adobe Type Manager is a registered trademark of Adobe Systems Inc.

Interactive TEX Ef

WYSIWYG TEX Ef

User-friendly TEX Ef

Textures Ef It's not like any other TEX system.'''

When Apple introduced the Macintosh and its graphic interface,

we embarked on a long-term project of research toward a m
system "for the rest of us," a system that would be humanely

interactive, and visibly responsive; an integrated TJ$ system,

designed to be radically easy for those new to TJ$, and engineered

to be the best for expert TJ$ users. The research continues;

the product is Textures.

Textures is something of a Copernican revolution in TJ@ interface.

The paradigm shifts from the usual 'I)$ "input-process-output-

repeat" mode, to a wider frame wherein the TEX language

describes a dynamic document that is continuously, quietly
L L realized" as you write it, with no process steps whatsoever.

PI
On the other hand, Textures

is exactly like every other

TEX system. Its TEX engine

is strictly standard and

up-to-date; it runs IQM,

AMS-W, and all standard

TEX macros without change.

But even here it's not

ordinary, with hand-tuned

assembler code for maximum

performance, and a

transparent memory model

that you can't fill until you

run out of disk.

P I
If you are a serious user

on another platform, it can

be worth getting a Mac just

to run Textures.

For all Macintosh

processors and printers

minimum 2.5M8 memory

and 5MB disk

This change in perspective must be experienced to be fully

grasped. As you would expect, Textures is good for beginners.

You might be surprised to know that it's also good for experienced

TJ$ users and especially good for T@ programmers.[21 It's not

a "front-end" or an imitation, it's a full-scale live TjjX processor

that's actually easy to use.

There's much more to Textures than a new perspective on TJ$,

of course; too much to list here but we'll mention custom menus,

Computer Modern Postscript fonts, illustrations, inter-application

communication, automatic installation, genuine support,

We don't claim perfection; nor do we believe in exaggerated

marketing, odd as this may seem; and we do understand our

finite abilities to provide all that one might wish. But we also

guarantee that you will be satisfied with Textures and with the

service you receive from Blue Sky Research, or we will refund

the (very finite) price you pay.

Blue Sky Research

534 SW Third Avenue

Portland, Oregon 97204

USA

8006228398

5032229571

facsimile 503 222 1643

sales@bluesky.com

Volume 14, Number 3 / October 1993
1993 Annual Meeting Proceedings

Keynote Addresses

Futures

Macro Packages

Working with 'I&$

Drivers

Language issues

Fonts

Macro writing

Christina A.L. Thiele / The future of T&X and TUG

Joachim Lammarsch / A new typesetting system: is it really necessary?

Marek RyCko and Boguslaw Jackowski / m from \indent to \par

Philip Taylor / NTS: the future of m?
Roger Hunter / A future for !QX

Frank G. Bennett, Jr. / L w : context-sensitive legal citations for U W
Daniel Taupin / Using QX and METRFONT to build complicated maps

Daniel Taupin / MusicQX: Using Z&X to write polyphonic or instrumental
music

Laurent Siebenmann / A format compilation framework for European languages

Nelson Beebe / Bibliography prettyprinting and syntax checking

Martin Bryan / A QX user's guide to ISO's Document Style Semantics and
Specification Language (DSSSL)

Peter Flynn / QX and SGML: a recipe for disaster?

Xinxin Wang and Derick Wood / An abstract model for tables

Michel Lavaud / Developing a multi-windowing environment for research based

on QX

Minato Kawaguti 1 A versatile Z&X device driver

Gabriel Valiente Feruglio and Robert Fuster 1 Typesetting Catalan texts with

m
Yannis Haralambous / The Khmer script tamed by the Lion (of m)
John Plaice / Language-dependent ligatures

Michael Doob and Craig Platt / Virtual fonts in a production environment

Berthold K.P. Horn / Where are the math fonts?

Alan Jeffrey / A Postscript font installation package written in l k X
(edited by Alan Jeffrey) / Math font encodings: a workshop summary

Wlodek Bzyl and Tomasz Przechlewski / An application of literate
programming: creating a format for the Bulletin of the Polish TUG

Jonathan Fine / Galleys, space, and automata

Kees van der Laan / Syntactic sugar

Kees van der Laan / Sorting within QX

Education and archives 329 Mary Dyson / Teaching digital typography-the Didot Project

333 Irina V. Gorbunova / Russian-speaking user: from Chi- Writer and Ventura
Publisher to QX; learning difficulties

335 R. Allan Reese / How to set up and maintain a system

342 George D. Greenwade / The Comprehensive QX Archive Network (CTAN)

Delegates 352 Participants at the 1993 TUG meeting

TUG Business 356 Institutional members

Announcements 358 Calendar

360 TUG 1994 annual meeting, Santa Barbara, USA

Forms 361 TUG individual membership application

362 TUG institutional membership application

Advertisements 359 Index of advertisers

363 Consultants

