TUGDboat, Volume 13 (1992), No. 4

The \noname macros — a technical report

Jonathan Fine

Abstract

The \noname package provides a powerful envi-
ronment for writing TEX macros. Its use makes
macros easier to read, easier to write, and easier
to document. It allows ready access to powerful
control macros. It allows diagnostic and other code
to be tagged for conditional inclusion. The \noname
package is fully compatible with existing macros.

Here are two major features. It allows easy
access to arbitary character tokens. Lines that
do not begin with a white space character are
comments, and are ignored.

The intention has been to provide the pro-
ductive features that users of other programming
languages take for granted. This article provides an
outline of the history, design and implementation of
the \noname package.

Acknowledgements

I would like to thank Nelson Beebe, and particularly
Michael Downes, for their careful comments on an
earlier version of this article.

1 Introduction

The \noname package grew out of work the author
was doing two years ago. The goal was to write
macros, for setting verbatim code, that would
set source in a \tt font, and comments in a
proportional font. This effect was to be achieved
without additional mark up of the input file. Other

505

refinements over the usual verbatim listing for
source code were also desired.

In the course of this programming, extensive
access to characters with \catcodes other than
those usually given was desired. This proved to
be a stumbling block for this project, which still
awaits completion. Various programming tricks
were introduced. The result of systematically
developing these devices is the \noname macros.
Although they have now reached the stage of being
useful, there are developments being considered that
will further increase their power and usefulness.

The physical activity of erecting a building
commences with the digging of a hole, that will
become the foundations that support the planned
structure. The larger the building, the deeper the
hole. The \noname package is intended to provide
secure foundations for large scale collections of TEX
macros.

2 Examples

Here is a line of code from plain.tex. It supports
the \newif construction. It creates a control
sequence \if@ that must be followed by other
characters ‘i’ and ‘f’ with catcode other, i.e. 12.
Such funny letters arise from use of \string.

{\uccode‘1=‘1 \uccode‘2=‘f
\uppercase{\gdef\if@12{}}}

(The purpose of \if@ is to extract the string
foo from \iffoo, which is then used to construct
\foofalse and \footrue. The macro \if@ is also
intended to give an error if the argument to \newif
is not of the form \if...).

Here is the same macro defined using \noname.

\def \ife@ ’i’f {}

The right quote symbol °’ is an escape character
that serves to produce a character with catcode
other, whose character code is given by the following
alphabetic constant.

Here is another example. The \noname macro
definition

\def\spaces{ ~~""~ }
defines \spaces to be a macro whose replacement
text is five ordinary space tokens. (Ordinarily,
special tricks are required to get a space after a
control word or another space). Finally,

\def !\""M { \par }

will in \noname define active carriage return to
expand to \par.

506

3 Influences

This section attempts to list the various sources for
the design of the \noname macros.

3.1 Knuth’s WEB system. WEB allows source and
documentation to be mixed in the same file, and
in a disciplined manner. It implements literate
programming. The WEB system allows a module
to be incrementally coded. This means, to use
an example of Knuth, that with a module named
(Global variables in the outer block) one can add
to this module as, where, and when new global
variables are required. Without this feature the
global variables would have to be declared all
together and at once in the PASCAL source file.
Such a feature is not provided, nor planned, for
\noname.

Perhaps the most important idea borrowed
from WEB is the introduction of a preprocessor to
augment the facilities of the language.

Because Pascal is not well adapted to storing
character strings, Knuth implemented a “string
pool” feature. Such a device might be welcome
when writing TEX macros, for storing error and
other messages, which otherwise would consume
large amounts of main memory. These messages
could be stored either in in TEX’s string pool, or in
separate files on disc, to be read in as needed.

3.2 The C programming language. This lan-
guage is used widely for both system and applica-
tion programming, and its syntactic style is widely
known and imitated. Source written using \noname
tends to have a C-like appearance.

The C' language provides a preprocessor for
source files, just as does WEB. The \noname
package also includes a source file preprocessor.
In particular, the hash command syntax has been
copied from C, although the functioning will be
different. Also copied is the use of the colon ‘:’ as
a label, and names for some of the control macros.
(The MS-DOS batch language also uses ‘:’ as a
label).

3.3 Mittelbach’s doc option for IATEX. This
work showed to me that documenting source files for
TEX macros was a problem. Although his solution
is a significant advance, it has limitations. His open
recognition
[tjhe method of documentation of TEX
macros which I have introduced here
should ... only be taken as a first sketch.
TUGboat 10, no. 2 (1989), page 246
of this encouraged me to find my own solution.

TUGDboat, Volume 13 (1992), No. 4

The convention — that the initial character de-
termines whether a source file line is a comment or
code or a hash command —came from a wish to
have a natural input scheme for the typesetting of
source files.

Although the doc option gives a pleasant ap-
pearance to the large comment blocks, it leaves the
macro language of TEX unchanged, and sets small
comments within the code lines in a typewriter font.

WEB consists of TANGLE, which provides a lan-
guage enhancement to PASCAL, and WEAVE, which
typesets source files. The doc system as published
provided no language extension. It leave the TEX
macro language unchanged. (The later docstrip
feature does, however, allow for code to be tagged
to conditional inclusion).

WEAVE recognises the key words and symbols
of PASCAL, and uses this when the source file is
typeset, to improve the typographic quality. When
doc typesets a source file it sets code lines verbatim.
Apart from recognizing and indexing control words,
it has no understanding of the TEX macro language.
(The \noname package, by counting braces, is able
to guess when a \def-inition has come to an end).

As mentioned earlier, much of the motive for
\noname came from a wish to code something
superior to the doc option. This turns out to be
a larger project than I imagined. The \noname
macros provide part of the foundation.

3.4 Smalltalk. Certain concepts in Smalltalk
have had an influence on the internal coding of
\noname. The idea of compiling source into an
intermediate form came from Smalltalk, which uses
bytecode instructions. It also provides an excellent
example of a productive integrated programming
environment.

3.5 Wirth’s Modula-2. When the module con-
cept is added to \noname, it is quite possible that
the syntax, and some details of the implementation,
will draw upon Modula-2.

4 Design and Implementation

4.1 The Basic Problem. A TEX macro consists
of a string of tokens. A token is either a character
token —i.e. a character/catcode pair—or a control
sequence. The problem of producing any given
macro therefore reduces to producing any given
control sequence, and any given character token.
The control sequence problem shall be put to one
side, for except when control sequence names are
used to store textual information, it is enough that

TUGDboat, Volume 13 (1992), No. 4

the control sequence have a comprehensible name
formed from a fixed collection of characters.

Arbitary character tokens are produced via
careful use of the \uppercase command. They
are placed into macros by use of the \aftergroup
primitive. The TEXbook’s “dirty trick” construction
of a macro whose replacement text is \n asterisks
(p373-4) illustrates the basic technique.

4.2 \load, \comp, \online and \hsl. The
macro writer will specify, using a syntax to be
described later, a sequence of control sequences
and character tokens, to be formed into a macro.
The \noname macros will read and act upon this
input stream — there are examples above —so as to
construct the desired macro.

The \load command will read these macro-
building instructions from a file, and place the
result into TEX’s memory. The \comp command
will write the content of these instructions to a file
on disc, in a form that can then be re-processed at
high speed, by use of the \hsl command. Finally,
the \online command is like \load, except that it
takes its input from the console, rather than a file.

5 Structure of source files

5.1 White space. All white space is ignored
(unless preceded by a \noname escape character). It
is no longer necessary to use ‘%’ symbols to prevent
space tokens creeping into your macros.

5.2 Comment lines. Any line that does not
begin with white space is a comment line, and
will be ignored (unless it begins with a ‘#’ hash
character —see below).

5.3 Escape characters. The \noname package
has a rich range of escape characters.

produces an ordinary space token.

> produces a character, with catcode other = 12,
whose character code is given by the token
immediately following ‘’’. This token may be
a white space token, or some other character,
or a control symbol.

! is like ’’, except that it produces an active
character.

| is the bar construction, which allows access to
arbitary character tokens. It should be followed
by the \catcode, as a hexadecimal digit, and
then the character code, as a character or a
control symbol. Thus |D is equivalent to ! and
|C is equivalent to ’.

: is a label which produces an otherwise inacces-

sible macro, whose expansion is empty. This

507

device is most useful when used in conjuction
with the Basic Control Macros cited elsewhere.
will produce unusual character tokens. They
are intended for use with the \CASE and \FIND
macros (TUGboat, to appear), and some other
purposes.

Finally, the characters {}$#~_& and % have
their usual effect.

(CE

5.4 Control words. When using \noname, not
only can the letters a..zA..Z and the @ character
be used for forming control words, but also the
characters $&*_: and the digits 0..9. This does
not interfere with the usual use of the characters,
outside of control words. For example

\def\subscript_character{ _ }

defines \subscript_character to be a macro whose
replacement text is a subscript character, with ‘_’
as its character code.

5.5 Numeric constants. Within plain and
IATEX the control sequence \m@ne is used to re-
fer to a \count register whose value is fixed to be
—1. This feature is provided because —1 is a ubiq-
uitous constant. Macros run quicker, and occupy
less space, if \m@ne is used in place of -1. The
\noname package provides the same functionality,
but by typing [-1].

With \noname, the tokens [nnn] where nnn is a
literal number such as -1 or "57 or 16 will produce
a control sequence which is to store the number
nnn. This allows the popular numeric constants to
be referred to in a literal manner, rather than via
cryptic names.

A similar convention applies to numeric con-
stants specified as character constants. The charac-
ter ‘¢’ followed by a control symbol such as \x or
\""M will produce a control sequence which stores
a number, namely the ASCII value of x or ~~M
respectively.

If [is followed by a token that cannot begin
a literal number, i.e. other than 0..9 or +-’",
then no special behaviour occurs. Similarly, if ¢ is
not followed by a control sequence, then no special
behaviour occurs.

5.6 Hash commands. This is a feature bor-
rowed from C. Any source line beginning with a
hash # is a hash command. Hash commands control
the processing of the file. They allow conditional
inclusion of code. For example, if \ifdebug is
\iftrue then the line below

#\ifdebug

\checkingcode
#\fi

508

which contains \checkingcode will be processed,
while if \ifdebug is \iffalse then this line will be
skipped.

This feature allows the same file to contain
several variants of the same code. Currently,
IATEX has three files—art10.sty, art1l.sty, and
art12.sty —which are identical in all aspects,
except for the values of some numerical and other
parameters. Use of hash commands allows these
files to be described using a single source file.

This feature can also be used to maintain a
single file for several versions of a macro package.

6 Control macros

The author’s Basic Control Macros in TUGboat 12,
no. 2 are easier to use within the \noname environ-
ment, for they depend on a label ‘:’ being available.
The author has also written powerful control macros
\CASE and \FIND, which again depend on \noname
features—in this case that * and ; produce not
ordinarily accessible character tokens.

The author is about to release a control macro
\FSA (for Finite State Automaton). Here is an
example of its use. When, on a page, one vertical
item is placed beneath another, vertical space may
be required, or perhaps a penalty, or some other
activity. The \FSA device allows the decision
table for such transitions to be coded in a simple,
elegant, and economical manner. It will use @*; as
delimiters.

7 Structure of .hsl files

The details of the fine structure of the .hsl files
should be of little concern to macro programmers,
so long as it adequate to support their needs.

Here is an extract from a .hsl file.

~~@ \FILE tutor.hsl Y%

~"@ \year 1992 \month 9 ... 720 %
%{ \hsl"{"c"o"n"t"r" YANYNNNAA
% \tracinglostchars "{"m"a"i%

%"Il"m"e"n"u"}"}}{
% \def \online"{ \e
% \immediate \write"\

e \online%
#21"{% %%

R VYYNYA
Normally, during a \hsl, “~@ is a comment charac-
ter and % is ignored. This is designed to support
macro library files. (In this context, see The
TEXbook, p382-4). By setting % to comment, the
macros can be skipped at high speed.

By setting ~~@ to ignore, it is possible to read
the \FILE and date information in the header.
The date can be used for version control and
compatibility. For example, by storing multiple

TUGDboat, Volume 13 (1992), No. 4

versions of the same macros in a single file, the
most recent first, it is possible to load the macros
that are in force at some given date. Simply load
the first macro package whose date is before the
given date. (The date is precise to time of day, in
minutes, as supplied by TEX’s \time primitive).
Currently, the optional code controlled by hash
commands can be used only to generate multiple
.hsl files, each obtained by processing a different
subset of the source file. Essentially, the variant is
determined at the time of the \comp-ile. However,
the basic structure of the .hsl file is sufficiently
rich, as to allow these variants to be combined into
a single .hsl file. The setting of a flag will then
control the choice of variant at the time of the \hsl
of the file. This feature could be used to produce,
if wished, a single art.sty file for use with IATEX.

8 Modularity and named parameters

Many other languages restrict the scope of an
identifier, so that the same identifier can be used
for different purposes in different contexts. For
example, in C| identifiers declared within a function
are local to that function, while identifiers prefixed
by the keyword static are local to the file in which
they appear.

TEX has a single global name space. Conse-
quently, each author of macros has to be sure that
his or her control sequences do not clash with those
of plain, IATEX, or some other package. This is a
burden.

Here is a related matter. In other languages
the parameters to functions (the TEX equivalent
is macros) are identifiers. This improves the code
greatly. For example

\def\centerline #\text
{

\line{ \hss \text \hss }
}

is easier to read and maintain.
The addition of these facilities to the \noname
package is being investigated.

9 Performance

The single most important aspect of the perfor-
mance of the \noname package is the degree to
which it allows the macro writer to produce better
code quicker. I will leave the measurement of this
to others, who are able to be more objective. My
experience of using \noname is that the code written
is much easier to read after the event, and that
the various helpful facilities reduce coding time by

TUGDboat, Volume 13 (1992), No. 4

between 10 and 30 percent. The saving will depend
on the nature of the macros being written, and the
extent to which they are basic. If two (or more) al-
most identical versions of the same file are required,
then the time saving can be much greater. This is
also true if active and other special characters are
required.

The commands \load or \online are quick
enough, on a slow machine, to process small (say
50 line) files, but become tedious for much larger
files. They also have an overhead of one (1) control
sequence for every new control sequence processed.
This overhead will increase, and the performance
fall, when the various enhancements are added.
However, the \hsl command works at much greater
speed, and with minimal overhead.

The .hsl files are much smaller that the
source files from which they are generated. They
can be combined into a single library .hsl file,
with conditional run-time loading of the constituent
parts. These features can be used to save mass
storage requirement (note that file space is allocated
in fixed size blocks), and reduce traffic on a network
and on email. Note also that it can take the
operating system longer to find a small macro file,
than it takes TEX to process it.

However, most macros are loaded once, and
then \dump-ed as a format file, which can then be
loaded at high speed. The quality of the code will
then determine the size of this file, and thus how
quickly it can be loaded.

10 Future developments

Briefly, here are some projects that are under way.
Much progress has been made on coding a pretty
printer for typesetting source files written in the
\noname dialect. It is intended that it should also
be able to typeset suitably laid out C' and CH++
source files.

A proof-of-concept prototype for a single step
debugger, that will execute or expand TEX macros
and commands one at a time, has been coded, and
will also form part of the \noname package. I hope
that it will be useful both for learning and teaching
how TEX works, and also for development.

Finally, an interactive tutorial for \noname —
consisting of TEX macros and so running within
TEX —has been written.

11 Availability

This package has been developed privately. Future
developments will require financial support, most
likely from sale of the software.

509

Publishers and other major users of TEX require
custom macro packages. These are either written
in house by expert staff, or commissioned from
outside. These packages are usually proprietary,
although publishers tend to make them available
when appropriate to their authors.

At the other end, there is a large mass of un-
supported macro files, of variable quality, available
for no cost. In addition, there are packages such as
plain, IATEX, PICTEX.

Discussion with TEX users will reveal the tech-
nical and other merits of \noname, and help provide
a basis for pricing, licensing, distribution and other
policies.

The current version is already useful. It may
take six months to add modules, named parameters
and other advanced features. Also required, as in
C, are libraries of standard functions.

A demonstration version is available (from the
author only), so long as you agree to respect his
intellectual property rights.

¢ Jonathan Fine
203 Coldhams Lane
Cambridge
CB1 3HY
England
J.Fine@pmms.cam.ac.uk

